CABG:
An Automata Specification Language

Max Czapanskiy Raphael Almeida Brody Berg Shaina Graboyes

December 19, 2008

Contents

1. An Introduction to CABG

2. Tutorial

3. Language Reference Manual

4. Project Plan

5. Architectural Design

6. Test Plan

7. Lessons Learned

A. Appendix A — Source Code

B. Appendix B — Testing Source Code

Chapter 1

An Introduction to CABG

The CABG programming language allows users to program in terms of the states and
transitions of Definite Finite Automata (DFA). DFAs are very important to computer
science and many fundamental algorithms in networking, context-free grammars, and
regular expressions can be represented by the states and transitions of a DFA. CABG
seeks to provide an unobtrusive language for the quick and accurate creation of DFAs so
that they may be simulated with little time investment.

1.1. Background

A Deterministic Finite Automaton is a finite state machine that is composed of states
and transitions. DFAs take some input and for each different input, it transitions from
one state to another. A DFA is formally defined as a 5-tuple (Q, Z, 6, qo, F) each of which
represent the following:

- a finite set of states (Q)

- a finite set called the alphabet (2)

- a transition function (6 : Sx3 > S)

- a start sate (qo Q)

- a set of accepting states (F <€ Q)

DFAs can be used to represent all regular languages and have different possible
representations. DFAs can be specified formally by the 5-tuple listed above or it can be
represented graphically like so:

CABG makes it very easy to specify a DFA if one of these two representations is
available. Alternatively, one can use CABG's intuitive syntax to specify the desired

automaton.

1.2. Goals of CABG

CABG is a fast and accurate way to create programs that simulate DFAs based on the
typical graphical representation of DFAs.

1.2.1 Speed
DFAs are represented by states with transitions leading out of them. CABG's simple

syntax allows a user to easily specify states and the transitions leading out of them
without having to think in terms of anything aside from states and transitions. With
many programming languages, a user would have to move away from the simple states
and transition representation of a DFA in order to create a program that implements the
DFA, with CABG a user needs only the states and transitions to create a program.

1.2.2 Accuracy
CABG accurately runs the specified DFA on the given input. CABG will produce the

expected output faster than a human would be able to simulate the DFA on the input.
CABG actually simulates the running of the DFA so the user is guaranteed that the
output received is the output the DFA should produce.

1.2.3 Portable

CABG can run on any machine that can run OCAML. A user simply needs the CABG
language files and a working installation of OCAML. OCAML is available for Windows,
Linux, and Mac OS X and therefore CABG can also be run on any of these platforms.

1.2.4 Robust
CABG was designed with the intention that programmers would push its limits. CABG
will catch syntax errors and will run on any DFA that would run.

1.2.5 Flexible

CABG allows states to be declared in any order and ignores newlines, tabs, and spaces.
This makes CABG flexible and allows a user to format and write a file in the style the
user wants.

1.3. Summary

CABG is a fast and accurate way to simulate DFAs. It uses states and transitions to
define a DFA which the program simulates.

Chapter 2

Tutorial
2.1 Tutorial

CABG is a language based on finite automata. By specifying states and transitions,
one is able to specify an automaton and what it should do given some specific input.

The following few examples serve as a quick start guide to the language:

2.1.1 Hello World
Start ()

? 1==1 : print("Hello World") -> ;
End

This program prints “Hello World” as output. It defines the initial stating state of the
automaton and takes one action while it is in that state. The keyword “Start” is used to
define the state where we will start execution. The keyword “End” is used to conclude
the definition of a state. Each state is required to have a transition which is why the
qguestion mark and semicolon surround a condition that is always true. The arrow here
serves to fulfill that same purpose.

2.1.2 State Transitions

Start ()

x = 20

? x==20 : y = 10 -> ifTwoArgs x, V;
End

ifTwoArgs (a b)
print (string of int(a + b))
? 1==1 : ->;

End

After assigning 20 to x, this program confirms if that is true, if so, it will define y to be 10
and transitions to state ifTwoArgs with x and y. This function then adds the two values
and prints them.

Chapter 3

Language Reference Manual
3.1 Introduction

The CABG language is inspired by state machines such as Deterministic Finite Automata
or Turing Machines. Code written in CABG is composed of state and transition
definitions, as with a state machine, but it also includes variable declarations and
imperative functions for ease of use. State machines allow the programmer to naturally
describe algorithms related to protocols, from simple text processing to intricate
network protocols such as TCP.
An advantage of using state machines is the wealth of theory about them. State
machines can be described visually or mathematically. In the latter representation, a
DFA can be completely described by a 5-tuple: (S, A, T, s, F) as follows:

S={sy S, ..., Sy }is the set of states

A={sy, S, ..., Sk} is the alphabet

T=S XA ->S s the transition function

s —an element of S —is the start state

F —a subset of S —is the set of accepting states.

3.2. Lexical conventions

There are six kinds of tokens:

Identifiers

Keywords

Constants

Strings

Expression Operators

Other Separators

In general, spaces, new lines, and comments serve to separate tokens.

3.2.1 Comments: The ‘#’ character introduces a comment that ends at the ends with a
new line character.

3.2.2 |dentifiers: An identifier is a letter followed by zero or more letters or numbers.
Characters beyond the 127th in an identifier might be ignored.

3.2.3 Keywords:
“Start” — names the initial state where code will begin execution
“End” — concludes a state

3.2.4 Constants: There are several kinds of constants, as follows:

3.2.4.1 Integer Constants
An integer constant is a sequence of digits beginning with 1-9, followed by zero or more
numerical digits 0-9. The largest number is 9,999 and the smallest number is -9,999.

3.2.4.2 Strings

A string is zero to 255 characters from a-z, A-Z, 0-9 and space, tab, newline, and line
feed all within double-quotes. Escape sequences for space, tab, newline and line feed
are\s, \t, \n, and \r respectively. String constants do not behave like integers. A string
composed only of numbers is a string and not an integer.

3. 3. Syntax Notation

In the Syntax used in this manual, anything described in courier new is example code.

3. 4. State Names

State names consist of one or more alphabetic (A-Z, a-z).

3. 5. Objects and lvalues

An object is a region of storage. Objects can be defined in external libraries as a logical
grouping of data representation. (See “External Definitions”) An Ivalue is an expression
referring to an object. In other words an Ivalue is something that would be on the left
hand side of an assignment statement.

3.6. Conversions

A type will be inferred upon the initial declaration (string or integer). From there on, the
variable name used will refer to that type. All types must be used with explicit
conversion. For example, to print an integer, it must be explicitly converted to a string
prior to printing.

The two functions string_of int and int_of_string must be used for the conversions
described above.

3.7. Expressions

3.7.1 Transitions
In CABG, primary expressions are expressions separated by the following operators ? : -
> which are grouped from left to right.

3.7.1.1 identifier
An identifier can represent a state, a string or an int.

3.7.1.2 string
A string is a primary expression. We provide access to the entire string only, however,
CABG authors can write extended string manipulation libraries.

3.7.1.4 state call (destination)
A state call may be initiated in the final expression of a transition. It may include
parameters separated by commas ending with a semi-colon.

3.7.1.7 Transitions

Transitions take the following form: ? condition : action -> destination ;

where condition is a valid expression evaluating to a Boolean, action is a sequence of
zero or more statements separated by spaces, a destination is another state in the file
where execution continues. A destination may also simply return a value rather than
invoke another state.

3.7.4 Multiplicative
* [/ Multiplication and Division
Groups from left to right. Multiplication and division only operate on integer values.

3.7.5 Additive
+ - Addition and Subtraction
Groups from left to right. Addition and subtraction only operate on integer values.

3.7.6 Relational operators

<><=>=

Take the form: expression operation expression. The expressions must be of the same
type. Returns a Boolean value.

3.7.7 Equality operators

==, Equals

Take the form: expression operation expression. The expressions must be of the same
type. Returns a Boolean value.

3.7.8 Assignment

Takes the form Ivalue = expression where the identifier is a variable and not a function.
Gives the variable the value of the expression.

3.8. Declarations

Declarations bring values into the program in the form of variables. Variables must be
declared and defined in the same statement. The result of a declaration is the
introduction of a variable into the current scope.

3.8.1 Declaration of a State

A State is defined by its name and a set of parenthesis with a comma-separated list of
parameters it takes. A state is defined as a list of statements followed by a list of
transitions.

3.8.2 A program
A CABG program is a collection of one or more states. One state is named Start which
indicates where execution begins in the program.

Precisely how to use the special start state name:

Start ()
transitions...
end

Notes:
» The Start state can be defined anywhere in a function

» There is only one Start state per program

3.9. Statements

Statements are executed in sequence.

3.9.1 expression statement

Expression statements are variable declarations and the parts of transitions between
the : and the ->. They are evaluated as they are written. Variable declarations and
expressions outside of transitions are ended with a newline. Within a transition the
area between the : and the -> is a expression which can be null, can be a single
expression, or can be two expressions separates by a comma.

3.9.2 conditional statement

Each transition has a conditional statement. If the condition evaluates to true,
the action is taken and you travel to the destination. If the condition evaluates to false,
the next transition is attempted. If there is no available transition condition to evaluate
to true the interpreter informs the user politely that the input is not accepted by the
function.

3.10. Scope rules

CABG is lexically scoped. State-wide variables are available within the state where they
were created and are available during that execution of the state’s transitions.

There is a global scope. Global scope is one or more functions. To introduce additional
functions into the global scope, CABG users use the import keyword to bring in
additional functions.

When a state is called by another state it can access the global scope. Any parameters
must be passed explicitly.

Chapter 4

Project Plan
4.1 Process

Our main process for planning and specifying the language consisted of a few meetings
earlier on in the semester. During these meeting we would decide features we would
like to implement and how feasible each seemed to us at the time.

Some of the process for developing our language were meetings in pairs but a large
portion of the development was done in meetings where we all worked together,
helping each other catch mistakes.

Testing procedures were defined in a pair coding session and the actual testing was
done as a group when we felt our language had implemented the required features.

4.2 Style Guide

Although we did not have a formal specification for our style, when programming in
OCaml, we made use of new line spacing between statements to make statements,
particularly long ones clearly distinguishable. We also used indentation to indicate
statements which were within other statements or functions.

CABG has fairly flexible syntax as far as newlines and tabs go. We recommend that
CABG programmers use tabs to indent the statements and transitions within states.
This makes the state easy to read by the programmer and any future collaborators or
users. We also recommend that users leave a blank line between the beginning of one
state and the end of the next state for ease of readability. For consistency we also
recommend but do not require that the Start state be the first state specified in a
program.

4.3 Timeline

Summary of Milestones

10/15/2008 Main language features defined
10/21/2008 Language reference manual complete
12/02/2008 Testing / Development

12/18/2008 Implementation complete
12/18/2008 Documentation complete

4.4 Team Members

The development of CABG occurred in four phases. The first phase featured periodic
group meetings focused on figuring out what the language should do and be like. The
second involved individual work learning OCAML, the ocamlyacc and ocamllex tools etc.
This second phase was the longest phase, taking some weeks. The third phase was
where we broke into pairs. One pair, Brody and Max, focused on getting the Grammar,
AST, Lexer, Main and Interpreter to build. The other pair, Raphael and Shaina worked on
preparing the tests and supporting documentation for the project. The fourth and final
phase of the project was a period of intensive group work where we worked
individually, in pairs and as a group to complete the project.

The first phase, where we came up with ideas for the language was a challenge. We did
not consult enough of the existing online projects in order to sort the good ideas from
the bad. We went with our initial idea for a language rather than seeking experience
from our predecessors.

The second phase was even more difficult. OCAML and related technologies are quite
challenging to learn for several reasons. First of all, OCAML represents a programming
paradigm new to every member of our group. Second, due to the learning curve, it was
often weeks after a lecture from Professor Edwards that the true value of a lecture of
slide deck would become apparent. This disconnect between previous experience with
OCAML, and the huge learning curve mismatching with classroom learning were
hurdles.

The third phase of the project, small-group work was productive because as pairs we
were able to improve our mutual understanding of the technologies together. The
drawback however was that as a four-person group we were not effectively cross-
pollinating.

This subtle but important problem took time to overcome while in our fourth phase.
Eventually, in pair-programming we were able to be quite effective and conversant with
the technology.

We found that it was difficult to split up the file implementations since there are so
many dependencies between them. Although all members participated in the debugging
and toward the third phase of the project we alternated between the different
components, this was the initial division of responsibilities per pair for the initial starting
implementation of each task.

4.4.1 Raphael Almeida and Shaina Graboyes
- Testing design and automation

- Documentation

- Specification of AST

4.4.2 Brody Berg and Max Czapanskiy

- Grammar, Lexer, AST, Parser, Main

4.5 Development Tools

CABG was developed using the OCAML programming language (including ocamlyacc and
ocamllex) and text editors such as VIM and TextMate for OS X. SVN software was used
for version control of all code and documentation.

Chapter 5

Architectural Design

5.1 Major Components
The diagram below shows each of the components used in our language and how they

interact with each other.

Raw Text Result

v

Interpreter

Lexer (lexer .mll) (interpreter .ml

Token Stream AST

Node defs

AST node
definitions
(ast.mli)

5.2 Interface Details

The lexer defines all of our tokens, such as parentheses, commas, strings, and integers.
The grammar and ast.mli together define all the nodes of our abstract syntax tree. The
top level is a program, which is a list of states. A state has an identifier, a list of formals,
a list of statements, and a list of transitions. A statement is any expression that can be
evaluated, which includes literals, calls to our built in functions, variables, assignments,
other binary operators, and others. Transitions are the heart of our language. They
take three parts: a condition, a list of actions, and a target. The condition is a statement
that evaluates to a Boolean. The list of actions are space separated statements. These
generally have side effects resulting in output or a change in environment, such as print
or assignment. The destination is the name of the next state followed by a list of
arguments to pass. Argument lists, both here and in formals declarations, are comma
separated.

The interpreter takes the AST produced by the grammar and ast.mli, evaluates it, and
returns the result. It begins by executing the ‘Start’ state. It ends when it reaches a
destination with no state name (equivalent to a return statement in imperative
languages).

5.3 Contributions

All four group members contributed to all of the files. Max was the lead on the
interpreter. Brody took charge of the grammar. The lexer and ast.mli files were an
equal collaboration.

Chapter 6

Test Plan

6.1 Sample Test Programs — The next couple of programs are fairly representative of
our language test programs. Check the code listing on the Appendix for expected
output.

6.1.1: GCD Algorithm

Start ()

o
[
N
N
[N

?a>b :a=a->b ->gcd a, b;

?2?a<b:b=Db-a->gcda, b;

End
gcd (a, b)
print ("a equals")
print (a)
print ("b equals"™)
print (b)
? a == b: print("The gcd is") print(a) -> ;
?a>b :a=a->b ->gcd a, b;
?a<b:b=Db-a->gcda, b;
End

6.1.2: HelloWorld++

Start ()

21 >0 : print("i equals") print (i) -> Decrement i - 1;
End
Decrement (i)
21 >0 : print("i equals") print (i) -> Decrement i - 1;
?2 1 == 0 : print("All done") -> ;

End

6.2 Test Suites — A collection of test suites used for our language as included as
Appendix B. These test suites were chosen because we started our testing with very
specific test programs that implemented some simple feature of our language (such as a
single print statement). We did our best to make each test program targeted at each of
the features of the language allowing us to focus on the features that needed to be
worked on as those specific tests failed. As enough of those tests worked, we went on to
try out the more involved test programs such as the gcd algorithm.

6.3 Automation — In order to automate our testing, we used a modified version of the
testing shell script Professor Edwards shared with the class. We created specific test
cases and named them accordingly so we would be able to automatically iterate
through them and check for success against our implemented language.

6.4 Contributions — For our test plan, Shaina and Raphael wrote most of the test cases
during a pair meeting although Brody and Max contributed with a few new ones during
the development and testing process. Professor Edward’s shell script was slightly
modified by Raphael.

Chapter 7

Lessons Learned

7.1 Individual Lessons Learned
7.1.1 Raphael Almeida -
Compiler backend

Naturally, this project allowed me to gain a lot of familiarity with how compilers and
interpreters are structured. It was instructive knowing the kinds of components
compiler designers work on.

Group work

Something | already knew but working with other team members greatly assisted in the
learning process. We were able to explain and clarify things to each other until It also
allowed me to have a sense of the things.

Non-imperative programming takes a while to get used to.

Being so used to imperative programming, picking up this new style of programming
was difficult. The whole intuition for debugging imperative programs does not directly
translate and although working in a group helped clarify things, it was a fairly
challenging process.

7.1.2 Brody Berg -
Pair programming is powerful.

The experience of sitting with my group members and programming and watching them
program was extremely helpful when doing this project. It assisted us in learning new
technologies, ironing out hard bugs quickly and in maintaining steady progress when the
going got tough. It was also a great way to encourage everyone to get involved in the
programming — both as observers and typists.

Learning OCAML is hard.

Every member of our group has seen Lisp, but the experience of using OCAML and then
integrating it with the ocamlyacc and ocamllex tools was amazingly difficult. The syntax

in each different component was different but the overall difficulty was dealing with the
functional language of OCAML.

One member of our group took three different classes this semester with three different
languages. However, as an experienced imperative programmer it was comparatively
hard for them to transition to OCAML each time we had group work.

Another impact of the use of a functional language was that due to the rapidity at which
our language evolved, sometimes a person would view the latest code and see that the
features had totally outstripped not only what they saw last but also their experience
with the tools. We worked against this by getting everyone involved in each component
of the interpreter.

Understanding how OCAML, the parser, the lexer, the AST, supporting files and tools
relate was hard.

Understanding the different relationships between the various parts of an OCAML based
interpreter and the fact of the different file formats for the parser, AST, lexer and
supporting files like the interpreter was very difficult.

Getting intelligible feedback from the TA was impossible.
Never have | worked so hard to make so little progress that | felt so good about.

With respect to learning about parsing, scanning, interpreting and such things like
LR(0) automatons, this project was second to none.

| learn by seeing a machine fail, and then tweaking it so it works. Learning about the
various concepts of interpreters was greatly enabled by having the programming
language project in order to test and discuss my theories about how things work. By
being able to have a “lab” so to speak | was able to learn in a much more serious way
about what interpreters all about.

7.1.3 Max Czapanskiy - Working on the CABG language exposed me to functional
programming for the first time and also gave me a much better understanding of SVN.
I’d seen Lisp in the past (briefly) and used SVN at work, but the knowledge required for
this project was far greater than what | already had. When it came to learning OCaml|, it
was difficult to move away from the imperative mind set and initially it was frustrating.
Once | picked up thinking of functions as variables and using them recursively with lists
and maps it became easier. The other aspect that gave me trouble was the pattern
matching. For example, we ran into one problem where we had a function with pattern
matching that was supposed to return a variable but we used the function keyword
instead of the match with keywords. Debugging that was a lesson of its own.

Beyond the specific technologies | learned, this project was an exercise in
problem solving. The error messages in OCaml are pretty vague and when using yacc
and lex you can’t use debugging statements. This was great practice for breaking down
seemingly inscrutable errors into manageable pieces. The greater the frustration, the
greater the satisfaction. After you get past banging your head on the wall, getting a
language to compile is actually very satisfying.

7.1.4 Shaina Graboyes - It's important to get to know every part of your language. There
is no way to understand or change any component without understanding what you are
working on and how it affects everything else. Everyone always says that starting early
is important, and while that is very true, communication and understanding of all parts
by all group members is equally important and less obvious. Understanding the
relationships between the various files is half the battle of understanding and creating
your language. Get small things working first to get an understanding of the various
parts of the compiler/interpreter and slowly add more things. Make sure that you don't
sacrifice the goals of your language for the ease of programming and always keep your
goals in mind. The project is actually quite interesting so have fun and pay attention to
everything that is going on with your language.

7.2 Future Advice

We would advise future groups to make sure they be as specific as possible when
defining their language details. Implementing a working prototype of the language with
a limited subset early on in the process can also be instructive. Building a simple
prototype early on allows the group to really become familiar with the technology they
will be using for the rest of the project. This also allows the groups to have enough time
to make changes they feel are necessary to the language definition and implement
those features accordingly. This will minimize the amount of wasted efforts and written
code that will eventually be completely replaced.

20

Appendix A

Source Code

A.1 grammar.mli

type token =
| PLUS
| MINUS
| TIMES
| DIVIDE
| MOD
| COLON
| ARROW
| END
| ASSIGN
| PRINT
| INTTOSTRING
| LPAREN
| RPAREN
| QUOTE
| LT
| GT
| EQ
| QUESTION
| INT of (int)

| STRING of (string)

21

| ID of (string)

| EOF

val program

(Lexing.lexbuf -> token) -> Lexing.lexbuf -> Ast.program

00

A.2 grammar.mly

o\
—

(*

Authors: Brody Berg, Max Czapanskiy after Edwards

Date: Fall 2008

*)

open Ast

let parse error s = (* Called by the parser function on error *)

print endline s;

flush stdout

o°
—

$token PLUS

$token MINUS

%token TIMES

%$token DIVIDE

$token MOD

%$token COLON

$token SEMI

%$token COMMA

72

stoken ARROW
stoken END

stoken ASSIGN
token PRINT
$token INTTOSTRING
stoken LPAREN
stoken RPAREN
stoken QUOTE
$token LT GT EQ
stoken QUESTION
$token <int> INT
$token <string> STRING
$token <string> ID

$token EOF

$start program

stype <Ast.program> program

o°
o°

/* A program is a start state and a list of

states */

program:
/*ox/ {011)
| program state { ($2 :: $1) }

N4

/* need to implement the ability to handle parameters */
state:

ID LPAREN arg list RPAREN statement list transition list END

{ { sname = S$1;
formals = $3;
statements = $5;
transitions = $6; } }

/* An arg list is a list of comma separated statements */

arg list:
/* x/ { [1 1}
| statement { [s1]1 }

| statement COMMA arg list { $1::83 }

/* A list of statements, starting a state the list may be empty
*/

statement list:
/xox/ {0)

| statement statement list { $1::$2 }

/* A list of transitions within a state the list may be empty */

transition list:
/xox/ {0)

| transition transition list { $1::32 }

A

transition:

QUESTION statement COLON statement list ARROW call SEMI

{ { condition = $2;
actions = $4;

target = $6; } }

call:

/* */ { { state = ""; args = [1; } }

| ID arg_list { { state = $1; args = $2;

Statement:
/* Nothing */
| INT
| STRING
| ID
| PRINT LPAREN statement RPAREN
| INTTOSTRING LPAREN statement RPAREN
| statement ASSIGN statement
$3) 1}
| statement PLUS statement

| statement MINUS statement

| statement TIMES statement

NA

{ Empty }
{ Int($1) }
{ String($1) }
{ Id(s1) }
{ LibCallP($3) }
{ LibCallIS($3) }

{ Binop($1, Assign,

{ Binop ($1, Add, $3)

{ Binop($1, Sub, $3)

{ Binop ($1, Mult, $3)

$3)

$3)

statement

statement

statement

statement

}

statement

}

DIVIDE statement

MOD statement

LT statement

GT statement

EQ statement

27

Binop ($1,

Binop ($1,

Binop ($1,

Binop ($1,

Binop ($1,

Div, $3)

Mod, $3)

Less, $3)

Greater,

Equal,

A.3 ast.mli
(*
Authors: Brody Berg, Max Czapanskiy

Date: Fall 2008

*)

type op = Assign | Mod | Add | Sub | Mult | Div | Equal | Neq |
Less | Leq | Greater | Geg

type statement =
Empty
| Int of int
| String of string
| Id of string
| LibCallP of statement
| LibCallIS of statement

| Binop of statement * op * statement

type call = {
state: string;

args: statement list;

type transition = {

condition: statement;

7R

actions: statement list;

target: call;

type state = {
sname: string;
formals: statement list;
statements: statement list;

transitions: transition list;

type program = state list

70

A.4 interpreter.ml

(*
Authors: Brody Berg, Max Czapanskiy after Edwards
Date: Fall 2008

*)

open Ast

open String

module NameMap = Map.Make (struct
type t = string
let compare x y = Pervasives.compare x y

end)

exception ReturnException of string

let run states =
(* Put the states into a symbol table *)
let state declarations = List.fold left

(fun state map state declaration -> NameMap.add
state declaration.sname state declaration state map)

NameMap.empty states

in

(* eval returns a tuple: (result of expression, updated
environment) *)

20

let rec eval stmt env = match stmt with
Int (x) -> string of int x, env
| String(x) -> x, env
| LibCallP(x) ->
let value, = eval x env in
print endline value; value, env
| LibCallIS(x) -> let value, = eval x env in value, env
| Binop(left, op, right) ->
let a, env = eval left env in let x =
(Ery int of string a with Failure "int of string" -> 0)
in
let b, env = eval right env in let y =
(Ery int of string b with Failure "int of string" -> 0)
in
(match op with
Add -> string of int (x + y), env
| Sub -> string of int (x - y), env
| Mult -> string of int (x * y), env
| Div -> string of int (x / y), env
| Mod -> string of int (x mod y), env
| Assign -> b, NameMap.add
(match left with
Id(a) -> a

| -> let e = "CABG: Invalid lvalue" in raise

(ReturnException e)) b env

21

| Less -> string of bool (x < y), env

| Greater -> string of bool (x > y), env

| Equal -> string of bool (x == y), env
| Neq -> string of bool (x != y), env)
| Id(x) -> if NameMap.mem X env

then NameMap.find x env, env
else x, env

in

let rec evalStatementList statementlist env = match
statementlist with

[l -> env

| s::sl -> let , result env = eval s env in evalStatementList
sl result env

in

let string of statement s = match s with
Id(x) -> x
| _> mwn

in

(* if the condition is true, iterate over the list of actions,
evaluating each one, then go to the target state *)

let rec follow transitionlist env this = match transitionlist
with

A

[] -> raise (Failure ("No matching conditions in state "
this))

22

| t::transitionlist -> let result, = eval t.condition env in
let name = t.target.state in
if bool of string result
then let env = evalStatementlList t.actions env in
(if compare name "" != 0
then

try exec (NameMap.find name
state declarations)

(List.map (fun arg -> let a, =
eval arg env in a) t.target.args)

with Not found -> raise (Failure ("Did not
find state: " » name)))

else follow transitionlist env this

and

exXec s args =

(* iterate through the formals and add their values to the
env *)

let env = List.fold left?2
(fun env left right -> let left, = eval left env in
NameMap.add left right env)
NameMap.empty s.formals args in
(* iterate over statement list, evaluating each line *)
let env = List.fold left

(fun env stmt -> let , env = eval stmt env in env) env
s.statements;

in

22

(* iterate over transition list until a valid transition is
found *)

follow s.transitions env s.sname

in

try
exec (NameMap.find "Start" state declarations) []

with Not found -> raise (Failure ("Did not find the Start
state"))

24

A.5 lexer.mll

(*
Authors: Brody Berg, Max Czapanskiy
Date: Fall 2008

*)

open Grammar (* Assumes the parser file is "grammar.mly". *)

rule token = parse

[[" " "\t'" "\n' "\r'] { token lexbuf }
| 4! { comment lexbuf }

| "End" { END }

| "print" { PRINT }

| "int to str" { INTTOSTRING }
[{ LPAREN }

") { RPAREN }

| <! { LT }

|r> { GT }

| r==" { EQ }

| ="' { ASSIGN }

| "+ { PLUS }

R

| =" { MINUS }

| { TIMES }

| '/ { DIVIDE }

| 'S { MOD }

| 2! { QUESTION }

I ['0" - '9']+ as lxm {

INT (int _of string 1lxm) }

| l'll([lal_lzl TA'—TZY o rQr_rQr v oy l\tl v\nv l\rl]*)llll as lxm
{ STRING (1lxm) }

| ['a'='z'" '"A'-'Z']['0'-'9' 'a'-'z' 'A'-'7Z']%* as lxm {
ID (1xm) }

|, { COMMA }

|t { COLON }

A { SEMI }

| o> { ARROW }

| eof { EOF }

| as char { raise (Failure("illegal character " *
Char.escaped char)) }

and comment = parse

'\n' { token lexbuf }

| { comment lexbuf }

A

A.6 main.ml
(*
Author: Brody Berg and Max Czapanskiy after Edwards

Date: Fall 2008

*)

let =
let lexbuf = Lexing.from channel stdin in

let program = Grammar.program Lexer.token lexbuf in

ignore (Interpreter.run program)

7

A.7 Makefile

cabg:
ocamlc -c ast.mli
ocamlyacc grammar.mly
ocamlc -c grammar.mli
ocamllex lexer.mll
ocamlc -c lexer.ml
ocamlc -c grammar.ml
ocamlc -c interpreter.ml
ocamlc -c main.ml

ocamlc -0 cabg lexer.cmo grammar.cmo interpreter.cmo
main.cmo

test

./testall.sh

clean:
rm cabg &
rm *.cmo &
rm *.cmi &
rm grammar.mli lexer.ml grammar.ml &

rm *~

2R

Appendix B — Testing code

B.1 Testing Automation Script

#!/bin/sh
CABG="./prototype/cabg"

Set time limit for all operations
ulimit -t 30

globallog=testall.log
rm -f $globallog
error=0

globalerror=0

keep=0
pass=0
fail=0
Usage () {
echo "Usage: testall.sh [options] [.cabg files]
echo "-k Keep intermediate files"
echo "-h Print this help"
exit 1
}
SignalError () {
if [Serror -eq 0] ; then
echo "FAILED"
error=1
fi
#echo " S1"

}

Compare <outfile> <reffile> <difffile>
Compares the outfile with reffile. Differences,
written to difffile
Compare () {
generatedfiles="S$generatedfiles $3"
echo diff -b $1 $2 ">" $3 1>&2
diff -b "$1"™ "s2" > "s$3" 2>&1 || |
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2
}
}

Run <args>
Report the command, run it, and report any errors

20

\AJ

if any,

Run () {
echo $* 1>&2
eval $* || |
SignalError "$1 failed on $*"
return 1

}

Check () {
error=0
basename="echo $1 | sed 's/.*\\///
s/.cabg//"'"
reffile="echo $1 | sed 's/.cabg$//'"
basedir=""echo $1 | sed 's/\/["\/1*$//' > /."

echo -n "Sbasename..."

echo 1>&2
echo "###### Testing Sbasename" 1>&2

generatedfiles="${basename}.out" &&
Run "S$CABG" "<" $1 ">" testOut/S${basename}.out &&
Compare ${basename}.out ${reffile}.out ${basename}.out.diff

Report the status and clean up the generated files

if [Serror -eq 0] ; then

if [Skeep -eq 0] ; then
rm -f $Sgeneratedfiles

fi
echo "OK"
echo "###### SUCCESS" 1>&2
pass="expr S$pass + 1°

else
echo "###### FAILED" 1>&2
globalerror=S$error
fail="expr $fail + 1°

fi

}

while getopts kdpsh c; do
case S$Sc in
k) # Keep intermediate files

keep=1
h) # Help
Usage
esac
done

shift “expr SOPTIND - 1°

an

if [$# -ge 1]

then
files=5@
else
files="tests/test-*.cabg"
fi

for file in S$files

do
case $file in
test-)
Check $file 2>> S$globallog
*) rr
echo "unknown file type $file"
globalerror=1
esac
done

echo "Fail: $fail Pass: S$pass"”

exit $globalerror

a1

B.2 Sample Test Programs (delimited by the word “Start”)

Start ()
i=25
21 >0 print ("i equals") print (i
End
Decrement (i)
21 >0 print ("i equals") print (i
2 i ==0 print ("All done") -> ;
End
Start ()
i =5
21 >0 print ("i equals") print (i
End
Decrement (i)
21 >0 print ("i equals") print (i
? i ==0 print ("All done") -> ;
End
Start ()
brody =1
max = brody + 1
? max > brody print ("Max Wins")
End
Start ()
i =5
21 >0 print ("i equals") print (i
End
Decrement (i)
21 >0 print ("i equals") print (i
2 i ==0 print ("All done") -> ;
End
Start ()
?2 1 == 1 : print(21+22) -> ;
End
Start ()
complicated = - (27 + (3 + (2 * 3) - (5
print (complicated)
End
Start ()
print(1 + 2 * 3 + 4)

an

) >

) >

) >

) >

) >

) >

Decrement

Decrement 0-1;

Decrement

Decrement 1 -

Decrement 2;

Decrement O;

Start ()

print(21/3)
21 =1 : ->;
End

Start ()
?l==1:print(
End

27%7) =>;

Start ()
x=21+23
?l==1:print(x)->;
End

Start ()
awesome = 21/3
print (awesome)
?l==1:->;

End

Start ()
modulus = 27 % 7
print (modulus)
?l==1:->;

End

Start ()
modulus = - (27) + 7
print (modulus)

End

Start ()
print ("this file has
another comment
x =1

comments")

a4

here is a comment

x + 1 print(x)
End

Start ()
modulus 27 + 7
print (modulus)
?l==1:->;

End

#, print modulus

Start ()
modulus 27 + 7
print (modulus)
modulus = 2
print (modulus)

->

4

comment after transition

?l==1:->;
End
Start ()
?1==1 : myint = 42 print(myint) ->;
End
Start ()
mystring = "42"
print (mystring)
?l==1:->;
End
Start ()
mystring = "23"
myint = int to str (mystring) + 1
print (myint)
?l==1:->;
End
Start ()
X = true
? x == true print ("42") -> next;
? 1==1 print ("8") -> next;
End
next ()
print("17")
?l==1:->;
End

a4

Start ()

x=17
y=17
? x ==y : print("42") -> next x;
? 1==1 : print("8") -> next y;
End
next (y)
print (y)
?l==1:->;
End
Start ()
x=5
y=4
? x ==y : print("42") -> next;
? 1==1 : print("8") -> next;
End
next ()
print("17")
?l==1:->;
End
Start ()
x=true
? x == false : print("42") -> next;
? 1==1: print("8") -> next;
End
next ()
print("17")
?l==1:->;
End
Start ()
a =>5 # assignment
b =1 # set b to 1
?1l==1 : -> Factorial a, b; # 1f a >= 1 -> Factorial
End

Factorial(a, b)

? a == : d=int to str(b) print(d) ->; # if a == 1 print
b

?2l1==1 : a=a -1b=a * b -> Factorial a, b;
End

48

print (a)
b;
b;

a 60
b = 224
print (a)
print (b)
? a == Db : print(a) -> ;
2 a>b a =a-b ->gcd a,
? a<b b=Db-a ->gcd a,
End
gcd (a, b)
print ("a equals")
print (a)
print ("b equals"™)
print (b)
? a == b: print ("The gcd is")
2 a>b a=a-b ->gcd a,
? a<b b=Db-a ->gcd a,
EndStart ()
x = 3
y =5
? x>y print("42") -> next;
?21l==1 print("8") -> next;
End
next ()
print ("17")
?2l==1:->;
End
Start ()
x=3
y=3
? x>y print("42") -> next;
?21l==1 print("8") -> next;
End
next ()
print ("17")
?l==1:->;
EndStart ()
x=3
y=1
? x>y print("42") -> next;
?21l==1 print("8") -> next;
End
next ()
print ("17")
?l==1:->;
EndStart ()
print ("Hello World")

4A

End
Start ()
print("42")
?l==1:->;
End
Start ()
print("42")
?l==1:->;
End
Start ()
? 1>0 : print("42") -> next;
End
next ()
print("17")
?l==1:->;
End
Start ()
? 1>0 : print("42") -> next;
?1l==1 : print("8") -> next;
End
next ()
print("17")
?l==1:->;
End Start ()
? 1<0 : print("42") -> next;
?1l== : —>next;
End
next
print("17")
?l==1:->;
EndStart ()
? 1<0 : print("42") -> next;
?l== : print("8") -> next;
End
next ()
print("17")
?l==1:->;
End
Start ()
xX=3
y=5
? x <y : print("42") -> next;
? print("8") -> next;
End

a7

next ()
print("17")

EndStart ()
X = 3
y =5
? x<y : print("42") -> next;
? print("8") -> next;
End
next ()
print("17")
EndStart ()
X = 3
y = 3
? x <y : print("42") -> next;
? print("8") -> next;
End
next ()
print("17")
End
Start ()
X = 3
y=1
? x <y : print("42") -> next;
?:print("8")->next;
End
next ()
print("17")
EndStart ()
x = 0-1
y =1
? x <y : print("42") -> next;
?l==1 print("8") -> next;
End
next ()
?1l==1 : print("17") -> ;
End
Start ()
i=20
? 1==1 : -> loop i ;
End
loop (1)
i <10 : 1 =1 4+ 1 -> loop i;
1==1 : print("42") ->;
End

4R

End

print (i)

->

49

