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1 Introduction

Drul. is a programming language designed for composing drum music. Unlike
other more general-purpose music programming languages (ChucK, SuperCollider,
Nyquist, Haskore), Drull’s focus is on defining and manipulating beat patterns and
is unconcerned with pitches, sound durations, or audio effects. DrulL is mainly an
imperative programming language, however it borrows ideas (map and filter) from
the functional paradigm. In additions to integers, Drul.’s main datatypes are pattern
and clip. Instruments are defined as constants.

A pattern is essentially an object that holds binary, discrete, time-series data. At
each discrete-time step, which will henceforth refer to as a beat, there is either a note
or a rest. For the non-musically inclined, a note represents sound produced by the
striking of a drum (or similar instrument) and a rest represents the absence of any
such sound. Patterns are immutable. When a pattern is manipulated, the target
pattern remains intact and a new copy is created.

An instrument is one of a pre-defined set of sounds (e.g. drum notes) that can occupy
a single beat.

A clip is a mapping of patterns to instruments. Clips are processed in sequence as
the program runs to produce output which may be audio, sheet-music notation, or
a MIDI file.

Drul is a strictly and staticly typed language. However, types are not explicitly
declared, they are inferred.

DruLL programs do not contain any loops or user-defined functions. All pattern and
clip creation and manipulation is done using the map construct described below.

2 Language specification

There are 3 data types in Drul.: int, pattern, and clip.
Keywords and arguments are white space delimited. Indentation is not significant.
Anything remaining on a line after // is a comment will be ignored by the compiler.

A map takes one or many patterns, and iterates over beats on all of them at the
same time, from the first beat to the last beat of the longest sequence.



A map returns a pattern (that can be empty). Inside the map, the last pattern
created is the one appended to the returned pattern.

Here is the list of the 16 reserved keywords:

NULL

if
elseif
else
rand
pattern
concat
slice
clip
instruments
length
map
mapper
print
output
return

Scopes: There is a general scope, and one scope per map (or mapper). Variables
in the general scope can not be seen from within a map. Variables defined in a map
are garbage collected at the end of the map.



3 Quick tutorial

In this section we give examples of what DrulL code will look like, in the form of a
tutorial.

3.1 Integers

Integers are part of our language. Unlike patterns and clips, they are mutable.

a = 3;
b=a+ 2;
c=b *x 12;
3.2 Pattern

Patterns are the data type the programmer will likely spend most of their time
dealing with. For convenience, the programmer can supply a string constant made
up of 1s and 0s, which will be translated into a pattern: if the character is a 1, there
is a note on the corresponding beat; if 0, a rest.

pl = pattern("101010");

Patterns can be concatenated to form new patterns:

pcat = concat(pl pattern("111000") pattern("1"));

pcat will be equal to 1010101110001.

There is also a shortcut to concatenate the same pattern many times:

pcat2 = concat(pl pl pl);
pcat3 = pattern("101010") .repeat(3);
pcat4d = pl.repeat(3);

peat2, peat3, and pcat4 are all equivalent.



3.3 Map

Of course, we will not hardcode every pattern we want to create. We use map to
create meaningful new patterns from existing ones:

p2 = map (p1)
{
if (pl.note) { pattern("11"); %}
else { pattern("0"); %
s

This will create the following pattern: 110110110. The goal of a map is to easily
iterate over a pattern. pl.note returns true if there is a note on the current beat,
false otherwise. If you call map on multiple patterns that are not of the same length,
the shorter patterns will be padded with NULL beats.

3.4 Mapper

For ease of use, you can define a mapper that contains the behaviour used by map.
We create p3, which is the same as p2:

mapper myMapper (pl)

{
if (pl.note) { return pattern("11"); }
else { return pattern("0"); }

p3 = map (pl) myMapper;

mapper will be very important when building a standard library for the language.

3.5 More complex examples

Now that we have a proper syntax, let’s get to more complicated examples. We
introduce 2 new features that can be used inside a map: prev and next. They give



you access to earlier and later beats in a pattern, using the syntax p.prev(n) and
p.next(n).

reduction: accelerate by cutting one beat out of two
downbeats = pattern("1000100010001000");

alternate_beats = pattern("10").repeat(8);
downbeat_diminution = map(downbeats alternate_beats)

{
if (alternate_beats.rest) { return pattern(""); } // pattern of length O
elseif (downbeats.note) { return pattern("1"); }
else { return pattern("0"); }

}

output is: 10101010.

improved reduction: putting a rest (0) only if the 2 original beats were rest

// this will map "1001100110011001" to "11111111", rather than "10101010"
one_and_four = pattern("1001100110011001");

alternate_beats = pattern("10") .repeat(8);

improved_diminution = map(one_and_four alternate_beats)

{
if (alternate_beats.rest) { return pattern(""); } // still required
elseif (one_and_four.note) { return pattern("1"); }
elseif (one_and_four.next(1l).note) { return pattern("1i"); }
else { return pattern("0"); }
+;

3.6 Instruments and Clips

Now that we have a large and varied collection of patterns, we can show how to
combine those patterns into clips.

Before we define any clips, we must tell the compiler what instruments they will use.
This can only be done once per program, and uses the instruments function:

instruments (hihat bassdrum crash snare);



Once the instruments are defined, we can create a clip from our existing patterns,
using an associative-array notation:

clipl = clip

(
bassdrum = downbeats
hihat alternate_beats

)

The same result can be achieved by simply listing the patterns for each instrument
in the order they are defined in the instruments declaration:

clip2 = clip

(

alternate_beats

downbeats

// remaining instruments have an empty beat-pattern
)
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