Matrix Entertainment Langauage (MatrEL)

Language Reference Manual

Rochelle Palting
<rcp2122>
Columbia University



Matrix Entertainment Langauage (MatrEL) ........cccooviieiieiiiieceee e 1

Language Reference ManUal ............ccooo oo s 1
R [ ] oo [FTox 1 o] o PR URPRPPRPTPR 4
2 LeXiCal CONVENLIONS .....coiuiiiiiiiieitieie ettt sttt sttt be e nreas 4
2.1 COMIMENTS ...t e e n e n e 4
2.2 1AENTITIErS (NAMES) ...ttt 4
2.3 KBYWOIGS ...ttt et e st et e e enre e teent e neenaeeneenneas 4
24 CONSLANTS ...ttt b e e et e s e e e b e e ere e be e eneeree e 5
24.1 INTEGET CONSLANTS ...ttt 5
24.2 SIS ettt ettt neenes 5

3 WhA'S 1N @ NAME? ...ttt bbbt 5
O O] 01Y/=T 61 o] o P U R R PRSPPI 5
4.1 INtEQEIS AN STIINGS. .. .iiieeieeiesieee e re e e nae e 5

5 EXPIESSIONS ...ttt sttt bbbt n e b et et ne e beeneenreas 6
5.1 PrimMary eXPreSSIONS ......ccueieeiueeeesreesieaeeseesseasesseessessesseesseessessesssesssessesssesssesses 6
511 TABNEITIET 1.t 6
51.2 ] (1o USSR 6
5.1.3 LEXPIESSION ... e 6

5.2 UNAEY OPEIALOTS. ...eieiiiiiitiie ettt sttt ettt e s e e e nbb e e bn e e nneeanes 6
521 By 8] (15551 (o] o SRR 6
522 FOWCOUNE MYIMALTTIX...vvevveeeieciieie et re e sre e enes 6
5.2.3 COlUMNCOUNE MYMAEEFIX ...t e 6

5.3 MUItipliCatiVe OPEIaAtOrS .......ccuviieieerieeie e se et nneas 6
531 EXPreSSION * EXPIESSION ...couveieiiiiieiieiesiee e et st e sie s sre et e e e b eneesreeeesnes 6

5.4 AUAITIVE OPEIALOIS.....cviiieiiieieeie sttt e e e e e e ste e sreesteense s e e naeaneenreas 6
54.1 EXPreSSION + EXPIESSION ....cvveieirieiieeie e et esteeste e e e sre e sraeste e sreenreenes 6
54.2 EXPreSSION — EXPIESSION ...c.vivieiiesiitete sttt sttt ettt e e 7

5.5  Relational OpEratOrs .......cccieiiiiic ettt 7
5.6  EQUAIILY OPEIALOIS ....c.viuiieiiiestieiesiie et 7
5.7  eXpressSion and EXPreSSION........ccuciveieerieieeseeeeseesreeeeseesteeeesreesseesesseesseseessens 7
5.8  EXPresSion OF EXPIESSION ......ccuiriiiiireeieeestestestestestesseeeesee e et bbb sbe e enee e s 7

B DECIATALIONS ..ottt bbb 7
6.1 TYPE-SPECITIEIS .ttt 7
6.2 INEAECIATALOIS. .. ccveeeieeieie ettt 7
6.3  D00IEAN AECIArAOrS .. c.veivieiieie e 7
6.4  SEriNG AECIAratorS.......ccueiieiice e 8
6.5  MALriX AECIAIAOrS. .. .eeiieiieciiee e 8
6.6 CEll AECIATALOIS .....ecveeeieeeie e 8

S = 1=] 1 11T 0 £ OO RUPROPRTUPRRPROPRRS 8
7.1 EXPression StateMENT ..........coveiiiiieie et 8
7.2 Compound STATEMENT .....cc.eriiitiitiiieieie e 8
7.3 Conditional SAtEMENT .......cceiiiiiieiee e 8
7.4 WRIlE STAEEMENT ....c.eeeiecieceee et nae e nneas 9
7.5 RETUIN STAEMENT ... 9

B SCOPE TUIES ...ttt ettt r et et re e re e nres 9



9

10
11

8.1 LEXICAI SCOPE ..ttt ettt ettt b e nae e 9

TYPES FEVISITEU ...ttt ettt te et e s e s raeaeeneenreeeeenes 9
9.1 FUNCEIONS ...ttt ettt be et e reenne e 9
0.2 IMIAETICES. ..ottt bbb bbbt 9
0.3 LIS ettt e e reeae e 10

FOrmated OULPUL ......ccveeiiiee ettt et nra e enes 10
EXAMPIE ..o s 11



1 Introduction

MatrEL is a computer language designed for board game creation. Examples of games
that can be created are Tic-Tac-Toe, Minesweeper, and Battleship. This language
reference manual details the features of MatrEL and how one can program in this exciting
language.

2 Lexical conventions

In MatrEL there are six kinds of tokens: identifiers, keywords, constants, strings,
expression operators, and other separators. A sequence of one or more separators is
required in between tokens. Blanks, tabs, newlines, and comments are used as separators
and are otherwise ignored by the compiler.

2.1 Comments
The string of characters that begins with # and ends with # is treated as a comment.

2.2 ldentifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a letter. The
underscore, “_”, symbol may be used as part of an identifier. Identifiers are case
sensitive; uppercase and lowercase letters are considered different.

2.3 Keywords

The following identifiers my only be used as keywords:
int
double
matrix
cell
string
return

if

elseif
else
while
blank
and

or

equal
notEqual
Boolean
true
false
getlnput



2.4 Constants
There are two types of constants in MatrEL:

2.4.1 Integer constants
An integer is a sequence of numbers 0-9, but the first digit cannot be 0.

2.4.2 Strings
A string is a sequence of characters enclosed in double quotes “ “ *.

3 What's in a Name?

MatrEL interprets an identifier based on its storage class and its type. The storage class
determines the location and lifetime of the storage associated with an identifier while the
type determines the meaning of the values found in the identifier’s storage.

The two declarable storage classes in MatrEL are automatic and external. Automatic
identifiers are local to each instantiation of a function and are discarded upon function
exit. External identifiers, on the other hand, exist independently of functions.

MatrEL supports two primary types of objects:
Characters: letters a-z and A-Z
Integers: sequence of numbers 0-9

In addition to the primary types MatrEL also has the following derived types:
cell: arow,column value that corresponds to an entry in a matrix
matrix: a two-dimensional array of cells
string: a sequence of characters
functions

4 Conversion
This section explains how operand conversion occurs in MatrEL.

4.1 Integers and Strings

An integer may be converted to a string representation of itself. Likewise, a string may
be converted to an integer given that the string is a string representation of a sequence of

integers.
The example,
string a = “5”
inth=a

resultsin b = 5.



5 Expressions

Expressions may be grouped into sub-expressions by surrounding the sub-expression in
curly braces {expression}.

5.1 Primary expressions
Primary expressions involving function calls group left to right.

5.1.1 identifier
An identifier is a primary expression so long as it is properly declared

5.1.2 string
A string is a primary expression consisting of alphabetic characters.

5.1.3 {expression}

An expression inside curly braces is an expression whose type is the same as the
expression without curly braces.

5.2 Unary operators
Expressions with unary operators group right to left.

5.2.1 -expression

The result is the negative of the expression and has the same type. The type of the
expression must be an integer.

5.2.2 rowCount myMatrix
rowCount applied to a matrix returns the number of rows in that matrix.

5.2.3 columnCount myMatrix
columnCount applied to a matrix returns the number of columns in that matrix.

5.3 Multiplicative operators
The multiplication operator * group left-to-right.

5.3.1 expression * expression
The binary * operator indicates multiplication. Both expressions must be integers.

5.4 Additive operators
The additive operators + and — group left-to-right.

5.4.1 expression + expression
The result is the sum of the expressions. Both expressions must be integers.



5.4.2 expression —expression
The result is the difference of the expressions. Both expressions must be integers.

5.5 Relational operators

The relational operators group left-to-right:
expression < expression less than

expression > expression greater than

expression <= expression less than or equal to
expression >= expression greater than or equal to
Both expressions must be integers.

5.6 Equality operators

equal expression expression equal to

notEqual expression expression not equal to

The expressions being compared must be of the same type. Within a comparison, the
expression types may be boolean, integer, or string.

5.7 expression and expression
The and operator groups left-to-right. Both expressions must be boolean.

5.8 expression or expression
The or operator groups left-to-right. Both expressions must be boolean.

6 Declarations

Declarations are used to give a type and value to an identifier. They have the form:
typeSpecifier identifier = value

6.1 Type-specifiers
The type-specifiers are:

int

boolean

string

matrix

cell

6.2 int declarators

int declarations have the form:
int identifier = value where value is a sequence of numbers 0-9.

6.3 boolean declarators

boolean declarations have the form:
boolean identifier = value where value is either true or false.



6.4 string declarators

string declarations have the form:
string identifier = “value” where value is a sequence of alphabet characters, including _
underscore.

6.5 matrix declarators

matrix declarations have the form:
matrix identifier = value where value is an integer and specifies the size of the square
matrix. The matrix will have value number of rows and value number of columns.

6.6 cell declarators

cell declarations have the form:
cell identifier = vall,val2 where vall and val2 are integers.

7 Statements
Statements are executed in sequence.

7.1 Expression statement

Expressions have the form
expression
and are typically assignments or function calls.

7.2 Compound statement

Statements can be executed in order by combining them into a compound statement
which puts curly braces around the list of statements:
compound statement:
{statement-list}
statement-list:
statement

;tétement
7.3 Conditional statement

The three forms of the conditional statement are:
if {expression} statement

if {expression} statement
else statement

if {expression} statement
if-else {expression} statement

if-else {expression} statement
else statement



For each statement the expression must evaluate to a boolean. The statement is executed
if the expression evaluates to true. If neither of the if-expressions evaluate to true, the
else statement will be executed.

7.4 While statement

The while statement has the form:

while {expression} statement
The expression evaluates to a boolean. The statement is repeatedly executed while the
expression evaluates to true.

7.5 Return statement

A function returns to its caller by means of the return statement, which has one of the
forms:

return no value is returned

return {expression} the value of the expression is returned

8 Scoperules

In MatrEL, we must consider lexical scope which is the area of the program in which an
identifier is accessible.

8.1 Lexical scope

There are two types of lexical scope, local and global. Identifiers declared within a
function are local only to that function and may not be used otherwise. Global identifiers
which are declared outside any and all functions may be used anywhere in the program.

9 Types revisited

This section summaries the operations that can be performed on objects of certain types.

9.1 Functions

Functions have the form:
functionReturnType functionName {parameter-list}
{function-body}

The function return type can be integer, boolean, matrix, cell, string or empty if the
function will not be returning an object. The functionName is a valid identifier. The
parameter-list will be of the form {type idenl, ..., type iden2}. The function-body is an
expression that evaluates to and returns the same type as functionReturnType.

9.2 Matrices

A matrix can be set the following ways:
myMatrix[myRow][myColumn] = “a” Sets the matrix cell at row = myRow
and column = myColumn to the
string a. The cell value must be a
string.



myMatrix[][] = value Sets each cell value to value. Value
may be a string or the keyword blank
to be set to a blank string.

myMatrix[][myColumn] = value Sets all of the cells in matrix column
= myColumn to value.
myMatrix[myRow][] = value Sets all of the cells in matrix row
= myRow to value.
myMatrix[/] = value Sets all of the cells in matrix

diagonal (bottom left to top right
diagonal) to value.
myMatrix[\] = value Sets all of the cells in matrix
diagonal (top left to bottom right
diagonal) to value.
myMatrix[cellPos] = value Sets the cell at location cellPos
(integer, integer) in matrix to value.
In each of the above cases, the row and column values must be an integer.

A matrix cell value can be accessed the following ways:

myMatrix[rowNum][columnNum] Returns the string value located at
cell position rowNum,columnNum in
myMatrix
Matrix values can be queried using the following keywords:
eachCellContains myMatrix value Returns true or false whether or not
each cell value in myMatrix equals
value
anyCellContains myMatrix value Returns true or false whether or not
one or more cell’s value in myMatrix
equals value
9.3 Cells

Cells have the form:
cell myCell = rowNum,colNum
where rowNum and colNum correspond to a row and column position in a matrix.

Row and column values can be extracted from a cell by using:
myCell:row returns the row number
myCell:column returns the column number

10 Formated Output

The following output functions are made available in MatrEL.:
printOut someString prints the string someString to the console
printMatrix myMatrix “pretty prints” the matrix myMatrix to the console



11 Example

The following example uses MatrEL to implement Tic-Tac-Toe.
# game Tic-Tac-Toe #

# initialize gameboard to a 3x3 matrix and set all cell entries to empty #
matrix gameboard = 3
gameboard[][] = blank

# create the three-in-a-row winning conditions #
boolean threeInARow {matrix m, cell pos, string value}
{

if eachCellContains m[pos:row][] value

{ return true }

elseif eachCellContains m[][pos:column] value

{ return true }

elseif eachCellContains m[\] value

{ return true }

elseif eachCellContains m[/] value

{ return true }

else

{ return false}

¥

# game loop #

boolean gameOver = false
string userlnput = empty
string value = empty

cell userPos

while —gameOver

{
printout “Enter selection as row,column:”
getlnput stdin userPos
printout “Enter position value:”
getlnput stdin value
gameboard[userPos] = value
if threeiInARow gameboard userPos value
{ printout “Player <value> wins!” }
elseif -{anyCellContains gameboard empty}
{ printout “Game tied! No more moves left!”
gameOver = true
}

printMatrix gameboard



	Matrix Entertainment Langauage (MatrEL)
	Language Reference Manual
	1 Introduction
	2 Lexical conventions
	2.1 Comments
	2.2 Identifiers (Names)
	2.3 Keywords
	2.4 Constants
	2.4.1 Integer constants
	2.4.2 Strings


	3 What’s in a Name?
	4 Conversion
	4.1 Integers and Strings

	5 Expressions
	5.1 Primary expressions
	5.1.1 identifier
	5.1.2 string
	5.1.3 {expression}

	5.2 Unary operators
	5.2.1 -expression
	5.2.2 rowCount myMatrix
	5.2.3 columnCount myMatrix

	5.3 Multiplicative operators
	5.3.1 expression * expression

	5.4 Additive operators
	5.4.1 expression + expression
	5.4.2 expression – expression

	5.5 Relational operators
	5.6 Equality operators
	5.7 expression and expression
	5.8 expression or expression

	6 Declarations
	6.1 Type-specifiers
	6.2 int declarators
	6.3 boolean declarators
	6.4 string declarators
	6.5 matrix declarators
	6.6 cell declarators

	7 Statements
	7.1 Expression statement
	7.2 Compound statement
	7.3 Conditional statement
	7.4 While statement
	7.5 Return statement

	8 Scope rules
	8.1 Lexical scope

	9 Types revisited
	9.1 Functions
	9.2 Matrices
	9.3 Cells

	10 Formated Output
	11 Example

