CABG LRM

Max Czapanskiy
Raphael Almeida
Brody Berg
Shaina Graboyes

1. Introduction

The CABG language is inspired by state machines such as Deterministic Finite
Automata or Turing Machines. Code written in CABG is composed of state and
transition definitions, as with a state machine, but it also includes variable
declarations and imperative functions for ease of use. State machines allow the
programmer to naturally describe algorithms related to protocols, from simple
text processing to intricate network protocols such as TCP.

An advantage of using state machines is the wealth of theory about them. State
machines can be described visually or mathematically. In the latter
representation, a DFA can be completely described by a 5-tuple: (S, A, T, s, F) as
follows:

. S={s, S, .., S, }is the set of states

. A={s, s, ..., Sk} is the alphabet

. T=SXA->Sis the transition function

. s —an element of S —is the start state

. F —a subset of S —is the set of accepting states.

A program in CABG is a composition of multiple files. Each file contains the
definition of one state machine. For every set of files there is exactly one Start
state labeled ‘entry’. Execution begins at that point. It is legal to invoke that state
during later program execution. It is illegal to have zero or multiple entry states.

2. Lexical conventions

There are six kinds of tokens:
- Identifiers
- Keywords
- Constants

- Strings
- Expression Operators
- Other Separators

In general, spaces, new lines, and comments serve to separate tokens.

Tabs establish a block. At least one blank, new line or comment is required to
separate otherwise adjacent identifiers, constants or operator pairs.

2.1 Comments: The ‘# character introduces a comment that ends at the ends
with a new line character.

2.2 |dentifiers: An identifier is a letter followed by zero or more letters or
numbers. No more than the first 127 characters are significant.

2.3 Keywords:
library —imports a file into the current context

entry — the point where code begins executing in the program
start — the point where code beings executing in a function
true/false — Boolean constants

2.4 Constants: There are several kinds of constants, as follows:

2.4.1 Integer Constants

An integer constant is a sequence of digits beginning with 1-9, followed by zero
or more numerical digits 0-9. The largest number is 9,999 and the smallest
number is -9,999.

2.4.2 Strings

A string is zero to 255 characters from a-z, A-Z, 0-9 and space, tab, newline and
l@#S%M&*()_-+=.,<>?/{}[]]|\:; all within double-quotes. Escape sequences for
space, tab and newline are \s, \t and \n. String constants do not behave like
integers. A string composed only of numbers is a string and not an integer.

2.4.3 Booleans
A Boolean is one of two values, either true or false, both of which are reserved
words.

3. Syntax Notation

In the Syntax used in this manual, anything described in courier newis
example code.

4. State Names

State names consist of one or more alphabetic (A-Z, a-z) characters beginning
with a capital letter. State names are not more than sixteen characters long.

5. Objects and Ivalues

An object is a region of storage. Objects can be defined in external libraries as a
logical grouping of data representation. (See “External Definitions”) An Ivalue is
an expression referring to an object. In other words an Ivalue is something that
would be on the left hand side of an assignment statement.

6. Conversions

A type will be inferred upon the initial declaration (string or integer). From there
on, the variable name used will refer to that type. All types must be used with
explicit conversion. For example, to print an integer, it must be explicitly
converted to a string prior to printing.

The two functions string_of_int and int_of_string must be used for the
conversions described above.

7. Expressions

The precedence of expression operators is the following: grouping, unary,
multiplicative, additive, relational, equality, assignment.

Inside of a state transition, reading left to right provides the order of the
precedence. The ? : —-> operators have the lowest precedence and are
evaluated left to right.

7.1 Primary Expressions
In CABG, primary expressions are expressions separated by the following
operators 2 : -> which are grouped from left to right.

7.1.1 identifier

An identifier can be a function, a state, a string or an int.

7.1.2 string
A string is a primary expression. We provide access to the entire string only,
however, CABG authors can write extended string manipulation libraries.

7.1.3 infix parenthesis

A parenthesized expression is a primary expression whose type is the same as the
expression without the parenthesis. One cannot have parenthesis across the
boundaries within a transition because the boundaries themselves are where
expressions are located. Similarly, one cannot start parenthesis before the list of
transitions and end it afterward because expressions are only allowed within the
transitions.

7.1.4 array index notation
Values of an array can be accessed via an index in the following way:
arrayName[indexNumber]. Index numbers can only be positive whole numbers.

7.1.5 state call
A state call may be initiated in the final expression of a transition. It may include
parameters separated by spaces.

7.1.6 function call
A function call can be placed in the same places as state call. If a function returns
a value and it is not assigned

7.1.7 Transitions

Transitions take the following form: ? condition : action -> destination
where condition is a valid expression evaluating to a Boolean, action is a
sequence of zero or more statements separated by commas, a destination is
another state in the file where execution continues. A destination may also
simply return a value rather than invoke another state.

7.2 Grouping
() Parentheses have the highest precedence.

7.3 Unary
- Negative
Operates on an integer expression to the right. Flips the sign.

! Not
Operates on a Boolean expression to the right. Flips the value between true and
false.

7.4 Multiplicative

* / Multiplication and Division

Groups from left to right. Multiplication and division only operate on integer
values.

7.5 Additive

+ - Addition and Subtraction

Groups from left to right. Addition and subtraction only operate on integer
values.

7.6 Relational operators

< > <= >=

Take the form: expression operation expression. The expressions must be of the
same type. Returns a Boolean value.

7.7 Equality operators

==, I= Equals and does not equal

Take the form: expression operation expression. The expressions must be of the
same type. Returns a Boolean value.

&§& || And / Or
Take the form: expression operation expression. The expressions must be of the
same type. Returns a Boolean value.

7.x Ternary operator
Haha just kidding. <3 CABG

7.8 Assignment

Takes the form Ivalue = expression where the identifier is a variable and not a
function. Gives the variable the value of the expression.

8. Declarations

Declarations bring values into the program in the form of variables. Variables
must be declared and defined in the same statement. The result of a declaration

is the introduction of a variable into the current scope.

8.1 Declaration of a Function
A Function is defined as a named set of states. It must have a Start state, and the
file ends with the keyword end.

8.2 Declaration of a State
A State is defined as a nhamed set of transitions.

By declaring a state within a function, the programmer makes that state available
for invocation in the destination section of any transition.

8.3 A program
A CABG program is a collection of one or more functions. One function has a Start
state labeled entry which indicates where execution begins in the program.

Precisely how to use the entry keyword:

entry Start
transitions..
end

Notes:
* Entry precedes Start

* There is only one entry per program

9. Statements

Statements are executed in sequence.

9.1 expression statement

Expression statements are variable declarations and the parts of transitions
between the : and the ->. They are evaluated as they are written. Variable
declarations and expressions outside of transitions are ended with a newline.
Within a transition the area between the : and the -> is a expression which can be
null, can be a single expression, or can be two expressions separates by a comma.

9.2 conditional statement
Each transition is a conditional statement. If the condition evaluates to true,
the action is taken and you travel to the destination. If the condition evaluates to

false, the next transition is attempted. If there is no available transition condition
to evaluate to true the interpreter informs the user politely that the input is not
accepted by the function.

9.3 Function calls

A function can be called within an expression. Calling a function that returns
the wrong type for the expression is a run-time error. Parameters are passed to
functions by a space delimited list.

9.4 Return statement

Return is an implicit operation. If the expression in a destination is not a state,
the destination is returned. This of course means that there is no keyword for
return.

10. Scope rules

CABG is lexically scoped. Function-wide variables are declared inside of a function
but outside of a state and are accessible and alterable from any state within the
function. State-wide variables are available within the state where they were
created and are available during that execution of the state’s transitions.

Within a state, declarations of identifiers with names identical to function wide
variables change the function-wide variable.

There is a global scope. Global scope is one or more functions. To introduce
additional functions into the global scope, CABG users use the import keyword to
bring in additional functions.

The collection of import statements results in the union of the named functions
into the global scope.

When a function is called by another function it can access the global scope. Any
parameters must be passed explicitly.

