
An ANTLR Grammar for Esterel
COMS W4115

Prof. Stephen A. Edwards
Fall 2006

Columbia University
Department of Computer Science

ANTLR

Esterel.g
class EsterelParser
extends Parser;

file : expr EOF!;

class EsterelLexer
extends Lexer;

ID : LETTER (LETTER
| DIGIT)* ;

→

EsterelParser.java
public class
EsterelParser extends
antlr.LLkParser
implements
EsterelParserTokenTypes
{}

EsterelLexer.java
public class EsterelLexer
extends antlr.CharScanner
implements
EsterelParserTokenTypes,
TokenStream {}

ANTLR Lexer Specifications
Look like

class MyLexer extends Lexer;
options {

option = value
}

Token1 : ’char’ ’char’ ;
Token2 : ’char’ ’char’ ;
Token3 : ’char’ (’char’)? ;

Tries to match all non-protected tokens at once.

ANTLR Parser Specifications
Look like

class MyParser extends Parser;
options {

option = value
}

rule1 : Token1 Token2
| Token3 rule2 ;

rule2 : (Token1 Token2)* ;
rule3 : rule1 ;

Looks at the next k tokens when deciding which option to
consider next.

An ANTLR grammar for Esterel
Esterel: Language out of France. Programs look like

module ABRO:
input A, B, R;
output O;

loop
[await A || await B];
emit O

each R

end module

The Esterel LRM
Lexical aspects are classical:
• Identifiers are sequences of letters, digits, and the

underline character , starting with a letter.
• Integers are as in any language, e.g., 123, and

floating-point numerical constants are as in C++ and
Java; the values 12.3, .123E2, and 1.23E1 are
constants of type double, while 12.3f, .123E2f, and
1.23E1f are constants of type float.

• Strings are written between double quotes, e.g.,
"a string", with doubled double quotes as in
"a "" double quote".

The Esterel LRM
• Keywords are reserved and cannot be used as

identifiers. Many constructs are bracketed, like
“present ... end present”. For such
constructs, repeating the initial keyword is optional;
one can also write “present ... end”.

• Simple comments start with % and end at end-of-line.
Multiple-line comments start with %{ and end with }% .

A Lexer for Esterel
Operators from the langauge reference manual:

. # + - / * || < > , = ; : := ()
[] ? ?? <= >= <> =>

Main observation: none longer than two characters. Need
k = 2 to disambiguate, e.g., ? and ??.

class EsterelLexer extends Lexer;
options {

k = 2;
}

A Lexer for Esterel
Next, I wrote a rule for each punctuation character:

PERIOD : ’.’ ;
POUND : ’#’ ;
PLUS : ’+’ ;
DASH : ’-’ ;
SLASH : ’/’ ;
STAR : ’*’ ;
PARALLEL : "||" ;

A Lexer for Esterel
Identifiers are standard:

ID
: (’a’..’z’ | ’A’..’Z’)

(’a’..’z’ | ’A’..’Z’ | ’_’ | ’0’..’9’)*
;

A Lexer for Esterel
String constants must be contained on a single line and
may contain double quotes, e.g.,

"This is a constant with ""double quotes"""

ANTLR makes this easy: annotating characters with !
discards them from the token text:

StringConstant
: ’"’!

(˜(’"’ | ’\n’)
| (’"’! ’"’)
)*
’"’!

;

A Lexer for Esterel
I got in trouble with the ˜ operator, which inverts a
character class. Invert with respect to what?

Needed to change options:

options {
k = 2;
charVocabulary = ’\3’..’\377’;
exportVocab = Esterel;

}

A Lexer for Esterel
Another problem: ANTLR scanners check each
recognized token’s text against keywords by default.
A string such as "abort" would scan as a keyword!

options {
k = 2;
charVocabulary = ’\3’..’\377’;
exportVocab = Esterel;
testLiterals = false;

}

ID options { testLiterals = true; }
: (’a’..’z’ | ’A’..’Z’) /* ... */ ;

Numbers Defined
From the LRM:

Integers are as in any language, e.g., 123, and
floating-point numerical constants are as in C++ and Java;
the values 12.3, .123E2, and 1.23E1 are constants of
type double, while 12.3f, .123E2f, and 1.23E1f are
constants of type float.

Numbers
With k = 2, for each rule ANTLR generates a set of
characters that can appear first and a set that can appear
second. But it doesn’t consider the possible combinations.

I split numbers into Number and FractionalNumber to
avoid this problem: If the two rules were combined, the
lookahead set for Number would include a period (e.g.,
from “.1”) followed by end-of-token e.g., from “1” by itself).

Example numbers:
.1$
.2
1$

First Second
. EOT
1 .
2 1

Number Rules

Number
: (’0’..’9’)+

(’.’ (’0’..’9’)* (Exponent)?
((’f’|’F’) { $setType(FloatConst); }
| /* empty */ { $setType(DoubleConst); }
)

| /* empty */ { $setType(Integer); }
)

;

Number Rules Continued

FractionalNumber
: ’.’ (’0’..’9’)+ (Exponent)?

((’f’|’F’) { $setType(FloatConst); }
| /* empty */ { $setType(DoubleConst); }
)

;

protected
Exponent

: (’e’|’E’) (’+’|’-’)? (’0’..’9’)+
;

Comments
From the LRM:

Simple comments start with % and end at end-of-line.
Multiple-line comments start with %{ and end with }%.

Comments
Comment

: ’%’
((’{’) => ’{’

(// Prevent .* from eating the whole file
options {greedy=false;}:
(

(’\r’ ’\n’) => ’\r’ ’\n’ { newline(); }
| ’\r’ { newline(); }
| ’\n’ { newline(); }
| ˜(’\n’ | ’\r’)

)
)*
"}%"

| ((˜’\n’))* ’\n’ { newline(); }
)

{ $setType(Token.SKIP); }
;

A Parser for Esterel
Esterel’s syntax started out using ; as a separator and
later allowed it to be a terminator.

The language reference manual doesn’t agree with what
the compiler accepts.

Grammar from the LRM
NonParallel:

AtomicStatement
Sequence

Sequence:
SequenceWithoutTerminator ;opt

SequenceWithoutTerminator:
AtomicStatement ; AtomicStatement
SequenceWithoutTerminator ; AtomicStatement

AtomicStatement:
nothing
pause
...

Grammar from the LRM
But in fact, the compiler accepts

module TestSemicolon1:
nothing;

end module
module TestSemicolon2:

nothing; nothing;
end module
module TestSemicolon3:

nothing; nothing
end module

Rule seems to be “one or more statements separated by
semicolons except for the last, which is optional.”

Grammar for Statement Sequences
Obvious solution:

sequence
: atomicStatement

(SEMICOLON atomicStatement)*
(SEMICOLON)?

;

warning: nondeterminism upon
k==1:SEMICOLON
between alt 1 and exit branch of block

Which option do you take when there’s a semicolon?

Nondeterminism

sequence : atomicStatement
(SEMICOLON atomicStatement)*
(SEMICOLON)? ;

Is equivalent to

sequence : atomicStatement seq1 seq2 ;

seq1 : SEMICOLON atomicStatement seq1
| /* nothing */ ;

seq2 : SEMICOLON
| /* nothing */ ;

Nondeterminism

sequence : atomicStatement seq1 seq2 ;
seq1 : SEMICOLON atomicStatement seq1

| /* nothing */ ;
seq2 : SEMICOLON

| /* nothing */ ;

How does it choose an alternative in seq1?

First choice: next token is a semicolon.

Second choice: next token is one that may follow seq1.

But this may also be a semicolon!

Nondeterminsm
Solution: tell ANTLR to be greedy and prefer the iteration
solution.

sequence
: atomicStatement

(options { greedy=true; }
: SEMICOLON! atomicStatement)*
(SEMICOLON!)?

;

Nondeterminism
Delays can be “A” “X A” “immediate A” or “[A and B].”

delay : expr bSigExpr
| bSigExpr
| "immediate" bSigExpr ;

bSigExpr : ID
| "[" signalExpression "]" ;

expr : ID | /* ... */ ;

Which choice when next token is an ID?

Nondeterminism

delay : expr bSigExpr
| bSigExpr
| "immediate" bSigExpr ;

What do we really want here?

If the delay is of the form “expr bSigExpr,” parse it that way.

Otherwise try the others.

Nondeterminism

delay : ((expr bSigExpr) => delayPair
| bSigExpr
| "immediate" bSigExpr
) ;

delayPair : expr bSigExpr ;

The => operator means “try to parse this first. If it works,
choose this alternative.”

Greedy Rules
The author of ANTLR writes

I have yet to see a case when building a parser
grammar where I did not want a subrule to match
as much input as possible.

However, it is particularly useful in scanners:

COMMENT
: "/*" (.)* "*/"
;

This doesn’t work like you’d expect...

Turning Off Greedy Rules
The right way is to disable greedy:

COMMENT
: "/*"

(options {greedy=false;} :.)*
"*/" ;

This only works if you have two characters of lookahead:

class L extends Lexer;
options {

k=2;
}

CMT : "/*" (options {greedy=false;} :.)* "*/" ;

The Dangling Else Problem

class MyGram extends Parser;

stmt : "if" expr "then" stmt ("else" stmt)? ;

Gives

ANTLR Parser Generator Version 2.7.1
gram.g:3: warning: nondeterminism upon
gram.g:3: k==1:"else"
gram.g:3: between alts 1 and 2 of block

Generated Code
stmt : "if" expr "then" stmt ("else" stmt)? ;
match(LITERAL_if);
expr();
match(LITERAL_then);
stmt();
if ((LA(1)==LITERAL_else)) {
match(LITERAL_else); /* Close binding else */
stmt();

} else if ((LA(1)==LITERAL_else)) {
/* go on: else can follow a stmt */

} else {
throw new SyntaxError(LT(1));

}

Removing the Warning

class MyGram extends Parser;

stmt
: "if" expr "then" stmt

(options {greedy=true;} :"else" stmt)?
;

A Simpler Language
class MyGram

extends Parser;

stmt
: "if" expr

"then" stmt
("else" stmt)?
"fi"

;

match(LITERAL_if);
expr();
match(LITERAL_then);
stmt();
switch (LA(1)) {
case LITERAL_else:

match(LITERAL_else);
stmt();
break;

case LITERAL_fi:
break;

default:
throw new SyntaxError(LT(1));

}
match(LITERAL_fi);

