Uniform General Algorithmic (UNIGA)

Financial Trading Language

Project Report

4§

g '
' 1798495439 | A&
] \ASDAQ A

Leon Wu (1lw2107@columbia.edu)
Jiahua Ni (jn2173@columbia.edu)
Jian Pan (jp2472@columbia.edu)
Yang Sha (ys2280@columbia.edu)
Yu Song (ys2310@columbia.edu)

May 7, 2007

Columbia University in the City of New York

Table of Content

1. Introduction
1.1 Introduction
1.2 Overview of the Language
1.3 Goals
1.3.1 Ease-to-use
1.3.2 Portability
1.3.3 Powerful
1.3.4 Versatile
1.3.5 Flexible
1.4 Basic Language Features
1.4.1 Statement
1.4.2 Data Types
1.4.3 Reserved Words
1.4.4 Expression and Operators
1.4.5 Punctuation Marks
1.4.6 Built in functions
1.4.7 User defined functions
1.5 Sample Code
1.5.1 buy
1.5.2 sell
1.5.3 if-else
1.5.4 while
1.6. Optional Features

2. Language Tutorial
2.1 “Hello World”
2.2 Stock orders
2.3 Check the prices
2.4 Check the portfolio
2.5 User defined function
2.6 A sample program

3. Language Reference Manual
3.1 Lexicon convention
3.1.1 Identifiers
3.1.2 Keywords
3.1.3 Numbers
3.1.4 String literals
3.1.5 Operators
3.2 Data Types
3.3 Declarations
3.3.1 General type declaration
3.4 Functions
3.4.1 Function Calls

14

3.4.2 Functions Types
3.4.3 Function Definitions
3.4.4 Function Declarations
3.4.5 Function Parameters and Arguments
3.4.6 Function invocation and return
3.4.7 Built-In functions
3.5 Expressions and Operators
3.5.1 Primary expressions
3.5.2 Postfix Operators
3.6 Binary Operators
3.7 Assignment Operators
3.8 Statements
3.8.1 Compound Statements
3.8.2 Null Statement
3.8.3 Selection Statement
3.8.4 Iteration Statement
3.8.5 Break Statement
3.8.6 Return Statement
3.8.7 Trading Statement
3.9 References

4. Project Plan
4.1 Project Processes Overview
4.1.1 Project planning
4.1.2 Project specification
4.1.3 Project development
4.1.4 Testing
4.2 Programming Style Guide
4.3 Project Timeline
4.4 Roles and Responsibilities
4.5 Software Development Environment

S. Architectural Design
5.1 Architecture Diagram
5.2 File System Diagram
5.3 Trading Process and Data Flow

6. Test Plan

6.1 Testing Overview and Goals
6.2 Unit Testing
6.3 Regression Testing

7. Lessons Learned

8. Appendix

23

29

33

40

44

1. Introduction

1.1 Introduction

Today many financial firms have their own trading software tools to facilitate investors’
investment process. These tools often differ from each other and usually take a long time
to learn. They are also not easy to be customized and very expensive. Many institutional
and individual investors have their own custom-designed investment strategies. They
want to implement their investment strategies using some easy-to-use software with low
cost. However, designing financial trading software from scratch requires professional
knowledge and can be costly and time-consuming. The UNIGA Language provides an
easy and efficient way for people to design their own investment plan. The language
allows users to write a program that can automatically trade financial instruments
including Stock, Options, Bonds, and Mutual Funds etc. using pre-defined trading
strategy that defines trading rules such as set-price, sell-price, comparisons, quantity and
other elements.

1.2 Overview of the Language

UNIGA is a high-level scripting language. Script programming languages enable
programmers to specify trading operations intuitively. Although not as comprehensive as
the more well known scripting languages such as Perl or Python, the built-in keywords
make the language more intuitive and easy to use. The user is able to design trading
software in the form of a program. The translator will then output a Java source file that
can be edited and compiled into Java byte-code.

1.3 Goals

UNIGA Language is a language that enables the users to perform various kinds of trading
operations, mainly consisted of selling and buying but with more easy-to-use powerful
features, using an interactive coding process. Thus, again, UNIGA Language is meant to
be easy to use, portable, powerful, versatile and flexible.

1.3.1 Ease-to-use

UNIGA Language is a clean, intuitive, and easy-to-learn language which allows users to
create their own buying and selling strategies by writing a few lines of code. UNIGA uses
a well-defined set of basic syntaxes similar to Perl or PHP and this makes UNIGA
programmer-friendly.

1.3.2 Portability

Since Java is a platform-independent portable language thanks to its own interpreter,
UNIGA Language is also portable language because it converts user-created-program
into Java code. So, you can execute the program on any platform where Java Virtual
Machine is installed.

1.3.3 Powerful
UNIGA language enables the users to perform various trading transactions, for example
buying, selling, and comparing stock prices, with just few lines of code.

This powerfulness allows work to be more and efficient and productive as well as
providing a clear outline of what was used to achieve the final result.

1.3.4 Versatile

Users can target almost every financial market all over the world from New York, Tokyo,
London, and Paris to Sydney. Also, users can deal with several financial commodities
such as stock, futures, securities, options and so on.

1.3.5 Flexible
UNIGA Language allows users to add their own functions or even import and other
libraries in order to use new functions that the users need.

1.4 Basic Language Features

1.4.1 Statement

An UNIGA Language statement represents a complete instruction. Statements can

contain reserved words, operators, and punctuation marks, and always end in a semicolon.
Examples are shown in Sample Code section.

1.4.2 Data Types

We have defined our data type as follows:

Numeric: double (to represent date, time, price, trade volume)
Boolean: true/false Boolean values.

1.4.3 Reserved Words

The basic vocabulary of UNIGA Language consists of a set of pre-defined words, which
we call reserved words. Reserved words each have a specific meaning or purpose. Mainly,
this can be classified into two subsets.

1.4.3.1 Basic Reserved Words

close Last traded price of a stock

date Date of the close of a stock

open First traded price of a stock

high Highest traded price of a stock

low Lowest traded price of a stock

market Get market price of stock

volume Number of shares or contracts traded in a stock

1.4.3.2 Control Reserved Words

while Used for continuous execution of an action, stops when the
preliminary condition disqualifies

for For loop

if-else Conditional execution clause

1.4.4 Expression and Operators

In UNIGA Language,
that represent a value.

an expression is any combination of reserved words and operators

1.4.4.1 Mathematical Operators

Math Operator | Meaning

+ Addition
Minus

* Multiplication

/ Division

1.4.4.2 Relational Operators

Relational Operator

Meaning

Less than

QGreater than

Assign

Equal to

Not Equal

1.4.4.3 Logical Operators

Relational Operator

Meaning

&

Logical AND

Logical OR

1.4.5 Punctuation Marks
There are a number of punctuation marks to establish statements, define parameters,
delimit words, and establish order of precedence.

Symbol | Name Description

; Semicolon Ends a statement

0 Parentheses Group values and forces them to be calculated first

, Comma Separates each parameter or input

Colon Used in declaration statements to begin the list of inputs

or variables

“” Quotation Marks | Defines a text string

[] Square Brackets Used to specify dates

{} Curly Brackets Used as modifier, to reference a value from a previous bar

1.4.6 Built in functions
In order to separate our language’s program from data, we’ve defined the following built

in functions for our language:

print/println: Console output functions, function print prints variable values, characters
and strings.

error(): Standard error handler

average(String stockID): Average stock price of current date
sum(): Total asset value of a portfolio.

holdings(): List current detailed stock holdings of a portfolio
pl(): Profit and loss of a portfolio.

1.4.7 User defined functions
In order to support user defined function, we defined the following means to define and
declare a function:

return_type func_name(paral,para2);

1.5 Sample Code
Sample code to perform operation in UNIGA Language:

1.5.1 buy
buy Symbol Shares Stop Limit;
buy “MSFT” 1000 23.5 28.7;

1.5.2 sell
sell Symbol Shares Stop Limit;
sell “MSFT” 1000 23.5 28.7;

1.5.3 if-else
if close > high “MSFT” {2};
else buy “MSFT” 500 0 0;

1.5.4 while

while(i<5){
println i;
i=i+1;

}

1.6. Optional Features

Because traders and investors tender to make mistakes when typing digits, it would be
nice if there are functionalities that automatically detect such misbehaviors and return
error messages according to the mistakes users made. This idea is hard to implement as
the compiler or interpreter is not easy to determine the range of user input.

2. Language Tutorial
2.1 “Hello World”

HelloWorld.uniga:

main () {
print “Hello World”;
}

The above program will print the “Hello World” on the screen. There is another function
“printin()” also take charge of printing a string or expression.

Since UNIGA will not generate an executable file, the only way to execute the above
program is:

java Main HelloWorld.uniga

The suffix of any executable UNIGA file must be “.uniga”.

2.2 Stock orders
Two built-in functions are responsible for buying/selling stocks: a) buy, and b) sell. The
stop price and limit price for the specific stock should be provided, however, if the
customer does not need to set the stop or limit price in advance, the stop price or limit
price should be 0.

The format of buy/sell is:
buy symbol number-of-shares stop-price limit-price
and

sell symbol number-of-shares stop-price limit-price

StockOrders.uniga

main () {
buy “MSFT” 1000 0 0;
sell “INTC” 550 0 18;

The above program executes the following orders: 1) buy 1000 shares of MSFT (the
symbol of Microsoft), without setting stop price and limit price, and 2) sell 550 shares of
INTC (the symbol of Intel), with $18 as the limit price.

These 2 orders will be recorded into the file /data/ORDERS.xml, and after the transaction
is executed, customer’s portfolio, which is recorded by /data/PROTFOLIO.xml will be
updated.

2.3 Check the prices
The historical prices can be displayed by using the keywords: “market”, “high”, “low”,

29 ¢¢ 29 ¢

“open”, “close”, “volume”, and “average”.

DailyHighAndLow.uniga

main () {
println high “MSFT” {2};
println low “MSFT” {2};
}

The DailyHighAndLow.uniga prints out the high and low prices of MSFT (symbol of
Microsoft) 2 days ago.

And if the customer needs the current price, he can use the function “market”.

double currentPrice=market “MSFT”;

You can also use it in the if or for statement.

while (market “MSFT” > 28.72) {
buy “MSFT” 1000 0 0;}

The above program will keep checking the price for Microsoft, and whenever the price is
larger than 28.72, an order is filed.

The function “average” is a little bit different. It outputs the average price between
today’s high price and low price, within the effective trading hours. In a valid order, the
stop and limit prices should be between daily high and low, the average function is very
helpful for users to identify the price range.

The format of this function is:

double avgPrice=average (“MSET”) ;

The return type is double.

2.4 Check the portfolio

There are several built-in functions for checking the portfolio. They are “pl”, and “sum”.
“pl()” will return today’s profit loss, while “sum()” will return the amount of your total
asset. The way to use these 2 functions are:

double profitLoss=pl();

and

double assetSum=sum{() ;

2.5 User defined function

UNIGA supports you to define your own function. A complete function consists of
declaration and body. For example, to create a function buying Google stock with market
price, you can write it like this:

double buyGoogle (double share, double stop, double limit) {
if share<l then {println “incorrect order”; return 0;}
buy “GOOG” share stop limit;
return 1;

And inside the “main()”, you can call this function:

main () {
while (Market “GOOG” > 412.0) {
if buyGoogle (1000, 0, 415.2) then println “filed”;

}

-10 -

2.6 A sample program

Below is a comprehensive program that executes a certain trading strategy mocking the
real trading situations, and at the same time testing all aspects of our language construct.

Strategy.uniga source file

mai n()
doubl e s;
s = sum);
print "Sumof portfolio: ";
print s;
println "----eemme oo "

doubl e five_hi gh;

five_hi gh=high "MSFT" {5} + high "MSFT" {4} + high "MsSFT" {3} + high
“MSFT" {2} + high "MSFT" {1};

five_hi gh=five_high/5;

doubl e five | ow

five | ow=l ow "MSFT" {5} + low "MSFT" {4} + low "MSFT" {3} + |ow "NMSFT"
{2} + low "MSFT" {1};

five |l ow=five | ow 5;

doubl e five_average;
five_average=five_high+five_ | ow
five_average=five_average/2;

doubl e tenfive_hi gh=high "MFT" {10} + high "MsSFT" {9} + high "MSFT" {8}
+ high "MSFT" {7} + high "MSFT" {6};

tenfive_hi gh=tenfive_hi gh/5;

doubl e tenfive_ | ow=l ow "MSFT" {10} + |low "MSFT" {9} + low "MSFT" {8} +
| ow "MSFT" {7} + |ow "MSFT" {6};

tenfive | owstenfive | ow 5;

doubl e ten_average=tenfive_hi gh+tenfive_| ow,

ten_average=t en_average/ 10;

ten_aver age=t en_aver age+fi ve_aver age;

ten_aver age=t en_aver age/ 2;

doubl e current _price=market "MSFT";
double Iimt, stop;
doubl e buyshare=0, sel | shar e=0;

whil e(current _price > five average & buyshare < 1900){
if open "MSFT" {0}>five_average then {
limt= open "NMSFT" {0};
buy "MSFT" 500 five low linit;

el se {

st op=open "MSFT" {0};

buy "MSFT" 500 stop five_high;
}
buyshar e=buyshar e+500;

current _price=nmarket "MSFT";

Strategy.uniga source

if current_price < five_average then {
if current_price < ten_average then {
sell "MSFT" 1000 current _price five_high;
}

el se {
sell "MSFT" 500 ten_average five_high;

}

doubl e del ta_average, del t a;

if open "MSFT" {0} - close "MSFT" {1} > 0 then{
del ta=open "MSFT" {0} - close "MSFT" {1};

el se {

}

del ta=cl ose "MSFT" {1} - open "MSFT" {0};

if ten_average > five_average then {
del ta_average=t en_aver age-five_average;
st op=open "MSFT" {0} - delta_average;
limt= market "MSFT" + delta;
sel|l "MSFT" 1000 stop limt;

el se {
del ta_average=five_average-ten_average;
st op=open "MSFT" {0} - delta;
limt= market "MSFT" + delta_ average;
buy "MSFT" 1000 stop limt;

}

s = sum);

print "Sumof portfolio: ";

print s;

println " ";

println "-----ememi e "

doubl e r;

r=mp();

print "Profit and loss: ";

print r;

println " ";

println "-----mmmi "

Output results

Sum of portfolio: 552555.0----------------------
Dat e: 4/ 25/ 2007

Order Type: buy

Stock ID: MSFT

Anmount : 500.0

Stop Price: 27.6

Limt Price: 28.55

Filled Status: 1

Filled Price: 28.55

Dat e: 4/ 25/ 2007
Order Type: buy
Stock I D MSFT
Anount : 500.0

Stop Price: 27.6
Limt Price: 28.55
Filled Status: 1
Filled Price: 28.55

Dat e: 4/ 25/ 2007
Order Type: buy
Stock I D MSFT
Amount : 500. 0

Stop Price: 27.6
Limt Price: 28.55
Filled Status: 1
Filled Price: 28.55

Dat e: 4/ 25/ 2007

O der Type: buy
Stock | D MSFT
Amount : 500.0

Stop Price: 27.6
Limt Price: 28.55
Filled Status: 1
Filled Price: 28.55

Dat e: 4/ 25/ 2007

Order Type: buy

Stock I D MSFT

Anount : 1000.0

Stop Price: 26.570000000000004
Limt Price: 40.0961

Filled Status: 0

Filled Price: 0.0

Sum of portfolio: 552915.0

Profit and | oss: 407550.0

-13 -

3. Language Reference Manual
3.1 Lexicon convention

3.1.1 Identifiers

Identifiers consist of a sequence of one or more uppercase or lowercase alphabetic
characters, (digits 0 to 9). The first character of an identifier should be a letter and cannot
be a number. Identifiers are case sensitive, upper case and lower case letters are treated
differently. Keywords are not identifiers.

3.1.2 Keywords
The following identifiers are reserved as keywords:

boolean double date void

if else for break

while function return market
open close volume high

low sell buy

3.1.3 Numbers
A number consists of digits, decimal point “.” All numbers in our language are
implemented as double precision floating point numbers by default.

3.1.4 String literals

Strings are sequences of zero or more characters. String literals are character strings
surrounded by quotation marks (“). String literals can include any valid character,
including white-space characters and character escape sequences.

3.1.5 Operators

An operator is a token that specifies an operation on at least one operand, and yields
some result (a value, designator, side effect, or some combination). Operands are
expressions or constants (a form of expression).

Operators in UNIGA are:

%
+> s :/
>a <7 === &a |

3.2 Data Types

We have defined our data type as follows:

Numeric: double (to represent date, time, price, trade volume)
True/False: Boolean values, there’s no array for this data type.

3.3 Declarations

3.3.1 General type declaration
The general syntax of a declaration is as follows:

declaration:

type-specifier init-declarator-list(opt);
init-declarator-list:

declarator

init_declarator-list , declarator

Type specifiers are: double, boolean
3.4 Functions

3.4.1 Function Calls

A function call is a primary expression, usually a function identifier followed by
parentheses, which is used to invoke a function. The parentheses contain a (possibly
empty) comma-separated list of expressions that are the arguments to the function.

3.4.2 Functions Types

A function has the derived type "function returning type". The type can be any data type
except array types or function types. If the function returns no value, its type is "function
returning void ", sometimes called a void function. Functions can be introduced into a
program in one of two ways:

1. A function definition can create a function designator, define its parameters and their
type, define the type of its return value, and supply the body of the function.

2. A function declaration announces the properties of a function defined elsewhere.

3.4.3 Function Definitions

A function definition includes the code for the function. Function definitions can appear
in any order, and in one source file or several, although a function cannot be split
between files. Function definitions cannot be nested.

A function definition has the following syntax:

function-definition:

return-type declarator declaration-list(opt)
compound-statement
declaration-specifiers

The declaration-specifiers (type-qualifier, and type- specifier) can be listed in any order.
Type specifiers are: double, boolean

Example:
double Max(x,y) {
if x >y then
return x;
else

return y;

/

main () {
buy "MSFT" 100 0 0;

buy "MSFT" Max(100, 50) 0 0;

/

3.4.4 Function Declarations
For all functions if the function definition is located after the calling function in the
source code, the function must be declared before calling it.

3.4.5 Function Parameters and Arguments

UNIGA functions exchange information by means of parameters and arguments. The
term parameter refers to any declaration within the parentheses following the function
name in a function declaration or definition; the term argument refers to any expression
within the parentheses of a function call.

The following rules apply to parameters and arguments of UNIGA functions:

. Except for functions with variable-length argument lists, the number of arguments

in a function call must be the same as the number of parameters in the function
definition. This number can be zero.

. The maximum number of arguments (and corresponding parameters) is 50 for a

single function.

. Arguments are separated by commas. However, the comma is not an operator in

this context, and the arguments can be evaluated by the compiler in any order.
There is, however, a sequence point before the actual call.

. Arguments are passed by value; that is, when a function is called, the parameter

receives a copy of the argument's value, not its address. This rule applies to all
scalar values, structures, and unions passed as arguments.

.Modifying a parameter does not modify the corresponding argument passed by

the function call.

3.4.6 Function invocation and return

Function call
A function call can be a single statement followed by a *;”.

6,9

Return statement
The return statement is used to return from the function at the point the return statement
is specified Return statement can also return a value. The return statement is ended by a

[T 2]
5 o

3.4.7 Built-In functions

3.4.7.1 print/println

Console output functions, function print prints variable values, characters and strings.
Function println prints entire line with return character.

>

Sample: print “calculating portfolio profit and loss’
println “calculating daily profit”

3.4.7.2 error()
Standard error handler

3.4.7.3 average(String stockID)
Average stock price of current date

3.4.7.4 sum()
Total asset value of a portfolio.

3.4.7.5 holdings()
List current detailed stock holdings of a portfolio

3.4.7.6 pl()
Profit and loss of a portfolio.

3.5 Expressions and Operators

3.5.1 Primary expressions
Simple expressions are called primary expressions; they denote values. Primary
expressions include previously declared identifiers, constants, string literals, and
parenthesized expressions.

Primary expressions have the following syntax:

primary-expression.
identifier

constant

string-literal
parenthesized expression

3.5.1.1 Identifier
An identifier is a primary expression provided it is declared as designating an object or a
function.

3.5.1.2 Constant
A constant is a primary expression. Its type depends on its form (in UNIGA, it’s Boolean
or double)

3.5.1.3 String Literals
A string literal is a primary expression

3.5.1.4 Parenthesized Expressions

An expression within parentheses has the same type and value as the expression without
parentheses would have. Any expression can be delimited by parentheses to change the
precedence of its operators.

3.5.2 Postfix Operators
Postfix expressions include function calls and postfix increment and decrement
expressions. The operators in postfix expressions have left-to-right associativity.

Postfix expressions have the following syntax:

postfix-expression:
function-call

3.5.2.1 Function Calls
Function calls have the following syntax:

function-call:

postfix-expression (argument-expression-list(opt))
argument-expression-list(opt):
assignment-expression
argument-expression-list(opt), assignment expression

A function call is a postfix expression consisting of a function designator followed by
parentheses.

The order of evaluation of any expressions in the function parameter list is undefined, but
there is a sequence point before the actual call. The parentheses can contain a list of
arguments (separated by commas) or can be empty.

3.6 Binary Operators
The binary operators are categorized as follows:
= Multiplicative operators: multiplication (*), and division (/)
= Additive operators: addition (+) and subtraction (-)
= Relational operators: less than (<), greater than (>)
= Equality operators: equality (==)
= Logical operators: AND (&) and OR (|)

3.6.1 Multiplicative operators:

The multiplicative operators are *, /. Operands must have arithmetic type. Operands are
converted, if necessary, according to the usual arithmetic conversion rules.

The * operator performs multiplication.

The / operator performs division.

3.6.2 Additive operators:

The additive operators + and - perform addition and subtraction. Operands are converted,
if necessary, according to the usual arithmetic conversion rules.

3.6.3 Relational operators:

The relational operators compare two operands and produce a result of type int. The
result is 0 if the relation is false, and 1 if it is true. The operators are: less than (<), greater
than (>). Both operands must have an arithmetic type.

The relational operators associate from left to right.

3.6.4 Equality operators:
The equality operator: equal (==) produces a result of type double, so that the result of
following statement is 1 if both operands have the same value, and 0 if they do not:

Expl == Exp2;
3.6.5 Logical operators:
The logical operators are AND (&) and OR (|). These operators guarantee left-to-right
evaluation. The result of the expression (of type double) is either O (false) or 1 (true).
The operands need not have the same type, but both types must be scalar. If the compiler
can make an evaluation by examining only the left operand, the right operand is not
evaluated.

3.7 Assignment Operators
Assignments result in the value of the target variable after the assignment. They can be
used as sub-expressions in larger expressions.

Assignment expressions have two operands: a modifiable value on the left and an
expression on the right. A simple assignment consists of the equal sign (=) between two
operands:

Expl = Exp2;

The value of expression Exp2 is assigned to Expl. The type is the type of Expl, and the
result is the value of Expl after completion of the operation.

3.8 Statements
This section describes the following kinds of statements in the UNIGA programming
language.

Statements are executed in the sequence in which they appear in a function body. UNIGA
supports the following types of statements:

= Compound statements
= Expression statements
= Null statements

= Selection statements

= [teration statements

= Break statements
= Trading statements

3.8.1 Compound Statements
A compound statement, or block, allows a sequence of statements to be treated as a single
statement.

A compound statement begins with a left brace, contains optional declarations followed
optionally by statements, and ends with a right brace, as shown in the following example:
compound-statement:

{declaration-list}? {statement-list}?
declaration-list:

declaration

| declaration-list declaration
Statement-list:

Statement

| statement-list statement

Example:
{

X=2;
y=3;
if x >y then
return x;
else
return y;

}

Block declarations are local to the block, and, for the rest of the block, they supersede
other declarations of the same name in outer scopes.

3.8.2 Null Statement

A null statement is used to provide a null operation in situations where the grammar of
the language requires a statement, but the program requires no work to be done. The null
statement consists of a semicolon:

The null statement is useful with the if, while, and for statements. The most common use
of this statement is in loop operations in which all the loop activity is performed by the
test portion of the loop.

3.8.3 Selection Statement
The if statement has the following syntax:

if expression

-20 -

then
Statement

else(opt)
else-statement(opt)

The statement following the control expression is executed if the value of the control
expression is true (non-zero). An if statement can be written with an optional else clause
that is executed if the control expression is false (0).

3.8.4 Iteration Statement
An iteration statement, or loop, repeatedly executes a statement, known as the loop body,
until the controlling expression is false (0). The control expression must have a scalar
type. Iteration statement in UNIGA includes the following:
= The while statement evaluates the control expression before executing the loop
body
= The for statement executes the loop body based on the evaluation of the second of
three expressions

3.8.4.1 The while Statement

The while statement evaluates a control expression before each execution of the loop
body. If the control expression is true (non-zero), the loop body is executed. If the control
expression is false (0), the while statement terminates. The while statement has the
following syntax:

while (expression)
Statement

3.8.4.2 The for Statement

The for statement evaluates three expressions and executes the loop body until the second
controlling expression evaluates to false (0). The for statement is useful for executing a
loop body a specified number of times. The for statement has the following syntax:

for (‘expression-1(opt) ;
expression-2(opt) ; expression-3(opt))
Statement

The for statement executes the loop body zero or more times. Semicolons (;) are used to
separate the control expressions. A for statement executes the following steps:

= expression-1 is evaluated once before the first iteration of the loop. This
expression usually specifies the initial values for variables used in the loop.

= expression-2 is any scalar expression that determines whether to terminate the
loop. expression-2 is evaluated before each loop iteration. If the expression is true
(nonzero), the loop body is executed. If the expression is false (0), execution of
the for statement terminates.

= expression-3 is evaluated after each iteration.

-21-

= The for statement executes until expression-2 is false (0), or until a jump
statement, such as break or goto, terminates execution of the loop.

3.8.5 Break Statement
The break statement causes the termination of the enclosing while and for. The control
passes to the statement following the terminated statement.

3.8.6 Return Statement

The return statement cause program control to return to the caller. An optional expression
following the return keyword will cause the function to return the value of the expression
to the caller. If required, the expression is converted, as if by assignment, to the type of
the function in which it appears.

3.8.7 Trading Statement
UNIGA provides standard trading statements which are easy to use.

buy/sell stock identifier expressionl expression2
stock identifier is of type string, and is generally the trading stock identifier. expressionl

is used to refer the volume to buy/sell. expression2 is used to refer the price at which to
buy/sell.

| high / low l | | wvolume l |
:
Statement [== _ aveg H
:
digit
:
ot oo
Logic (& [) -

3.9 References
[1] C Reference Manual, Dennis M.Ritchie

-22 -

4. Project Plan

4.1 Project Processes Overview
The entire UNIGA project is divided into four phases:

Project planning

Project specification

Project development (implementation)
Testing

The specific processes involved in each phase are explained in the section below.

4.1.1 Project planning

Out of five members of our project team, four of us have been in a same team working on
an Advanced Software Engineering course project one semester earlier. Having that
experience on our back, we were more experienced in planning and carrying out a
project’s execution which are of large size and involves multiple members’ teamwork.
Right from the beginning, we set out to put three things in place:

1.

Setting up the project development framework: this involves deciding on the
Java development language, the SVN source code version control system on
CUNIX, and deciding on the common coding style and coding convention

Setting up incremental development approach: we decided on abiding a
incremental development approach (which proved to have worked well in our
previous semester advanced software engineering projects) where we will first
implement a small functional core for our UNIGA compiler as early as possible,
and then expand on the language’s basic functionalities by adding system built-in
functions later on in the development stage. The functional core included basic
language control flow implementation, function declaration, variable declaration
and value assignment, data input and output. The system built-in functions
included functions for reading in XML stock data, output XML portfolio data,
portfolio profit and loss calculation, print to console function.

Assigning duty to each member of the team according to their skill sets and
personal preferences. Recollecting from past project experiences, we’ve learned
that a group works out best if each team member’s skill set is communicated
thoroughly at the very beginning of the project, and the member is assigned with
the portion of the work he feels comfortable and enjoys doing.

Set up responsibility reporting mechanism, and attain schedule milestone with
best effort: we realized it will be crucial that a there’s a responsibility reporting
mechanism in place throughout the project. This mechanism will set up multiple
milestones in the entire project’s schedule, guaranteeing all members attain their
promised payload at each milestone’s checkpoint. The mechanism also tries to
define the actions that can be taken in case a member’s workload was unable to be

-23 -

delivered. Trying to attain schedule milestone with best effort provides two
obvious advantages: first, small delays in earlier stages might propagate and
become bigger delays into later stages, the delays might grow exponentially and
eventually grow out of control, the best way to eliminate this is to abide the
schedule strictly; second, incremental progresses will boost entire team morale
and leave time buffer for unexpected delays that might happen later.

With the above project prerequisite already in place, we went on to specify the
requirements to out specific project. We identified the topic of our compiler project to be
a financial trading language based on two considerations: the first one is there’s no
prevalent language at the present time providing UNIGA’s function which makes our
implementation still unique; second, the scope and complexity involved in implementing
this topic would allow us to finish the development in the given time frame within this
semester. Having decided our UNIGA language target application, we further translated
the application requirements into the specifications stated in the next section.

4.1.2 Project specification

After analyzing our project’s target application: to provide an easy to learn high level
language for executing trading strategies, we set out our language specifications
accordingly:

We decided that in order for a language to function properly, the most bare essential
language constructs such to assign variable values, compare values, control program
logic flows must be in place, these include: arithmetic operators (+, -, *, /), relational
operators (>, <, ==), logical operators (&, |), selection statements (if ... else), and
iteration statements (while(), for()). The data types was originally to include integer,
floating point numbers, double precision numbers, and date variables, Boolean variables.
But later, in order to make reduce complexity, we decided to only support the double
precision type variable, which represents the stock price, volume and date. Only when
representing date, the date value is differentiated from the rest data by being quoted in
square brackets: [].

The application specific language construct include the following:

1. We created the “buy & sell” operator to support the action of buying and selling a
particular stock, the exemplar grammar is as:” buy/sell stock identifier
expressionl expression2”.

2. We defined that all input stock prices data at the beginning of the day are fed in as
inputs in the format of XML files. We would create a group of system built-in
functions to both read in these data and to output the data also as an XML file
after the program finishes execution. We would also create a group of functions to
calculate the profit/loss for a portfolio of stocks. These system built-in functions
basically perform the most common functions that the user is likely to call on a
daily operational basis.

_24 -

3. We would give the user the language construct to define their own functions, this
is also essential in today’s any given functional languages, and we do support user
functions declaration as well.

4.1.3 Project development

The project development was basically a strictly carried out plan according to our set out
project schedule. In addition to abiding to the project schedules, we also enforced weekly
meetings on every Monday noon before class to summarize previous week’s progress and
to determine the upcoming week’s task; through out the week, team members
communicate regularly, usually daily to report their development problems or to notify
the team if a newer version of project file has been updated into the version control
system; and then finally, usually on each Thursday afternoon of the week, we would have
our TA meetings with our TA Neesha to determine our progress relative to what the
project current is demanding, because the TA meeting happens during the middle of the
week, it’s another timeline correction we can have to make sure our week’s effort on the
project is well planned out.

The entire project development is done in an incremental way, listed as the graphical
development phase chart below:

UNIGA Planning UNIGA Development
Phase Phase

UNIGA
Testing Phase

Unit testing

Regression
testing

UNIGA basic core

Define project scope, (s P waaod

Create specification

Setup development
environment, source
control

UNIGA system add-in
functions
(buy, sell, portfolio functions)

Create project
schedule

AN NN NN p-"aINnINNNEENIanEn| ST T T

The specific time line of our project development and role assignment for each team
member is explained in section 4.3 and section 4.4 respectively.

4.1.4 Testing

Project testing was involved throughout the project in two different scales. One is testing
done during the phase of development, this included testing whether simple UNIGA code
snippets was compiled as expected after parser, lexer and walker have been created.
Testing at this stage were more of a tool to correct obvious errors existent in the ANTLR

_25-

language files. As the UNIGA basic core and system add-in functions were finished,
system level tests were deigned and carried out to verify whether the compiler as an
entirety qualifies to the expected performance measures demanded by the initial design.
In the UNIGA testing phase, two kinds of tests were designed and implemented, unit
testing and regression testing. Details of these two testing mechanisms and results are
elaborated in section 6 of this report.

4.2 Programming Style Guide

Language Programming Style Specifications

Java Names representing packages should be in all lower case.

Names representing types must be nouns and written in mixed case starting
with upper case.

Variable names must be in mixed case starting with lower case.

Names representing constants (final variables) must be all uppercase using
underscore to separate words.

Names representing methods must be verbs and written in mixed case
starting with lower case.

Iterator variables should be called i, j, k etc

Abbreviations in names should be avoided.

Exception classes should be suffixed with Exception.

Classes should be declared in individual files with the file name matching
the class name. Secondary private classes can be declared as inner classes
and reside in the file of the class they belong to.

The incompleteness of split lines must be made obvious

The package statement must be the first statement of the file. All files
should belong to a specific package

The import statements must follow the package statement. import
statements should be sorted with the most fundamental packages first, and
grouped with associated packages together and one blank line between
groups.

Method modifiers should be given in the following order:

<access> static abstract synchronized <unusual> final native

The <access> modifier (if present) must be the first modifier.

Variables should be initialized where they are declared and they should be
declared in the smallest scope possible.

Class variables should never be declared public.

Basic indentation should be 2

4.3 Project Timeline

Date Progress

January 17 Team Forming
January 22 Brain Storming
January 24 Determine a topic

-26 -

January 25 Subversion source control created

January 29 Start to sketch language outline

Feb 5 Finish Language Proposal

Feb 7 Start writing LRM and Final Report

Feb 7 Proposal delivered

Feb 12 Finish outlining LRM and Final Report

Feb 19 Initial sample code complete

Feb 28 Finish all .g file and move to test phase

March 5 Test script completes

March 5 Language Reference Manual (LRM) delivered

March 25 Built-in functions and Java implementation files developed
April 1 Makefile completed

April 8 Split of grammar files into ParserLexer.g and Walker.g completed
April 12 System demo to TA

April 18 All Java files have been completed and tested

April 19 System demo to TA

April 26 Final demo delievered

May 2 Final Report completed

May 7 Final report delivered

4.4 Roles and Responsibilities

Functional Part Responsibility Details
Jiahua Ni | Front end Writing Parser, Lexer, Walker, language
Team Leader specification, testing cases

Leon Wu | Back end Major system built-in functions, Source Control
setup, development framework setup, specifications
Jian Pan Back end, testing Walker, Unit testing, Regression testing cases, LRM,

final report

Yang Sha | Front end Writing Parser, Lexer, Walker, language
specification, built-in functions

Yu Song Testing Unit testing cases, Perl modules batch testing scripts,

LRM, final report, regression test

4.5 Software Development Environment

UNIGA language was developed mainly by using Java. ParserLexer.g and Walker.g are
ANTLR format and then be translated to Java codes. Besides these, other files are all
written in Java code.

4.5.1 Operating Systems
Our development was based on Java and ANTLR and thus we could use both UNIX and
Win32 environment. At home, we mainly use Win32 as the platform since it provides lots
of JDK tools. For file version control, we made use of SVN system which is installed in
UNIX machines in school.

_27-

4.5.2 Java 1.5

Java is a simple , object-oriented, network-savvy, interpreted, robust, secure, architecture
neural, portable, high-performance, multithreaded, dynamic language.

Java is most suitable language for our project as it provides almost all the functionalities
as standard library and thus significantly shortened both our coding and debugging time.

4.5.3 Perl 5.8.5

Perl took an active role in testing. It was obvious that, to test every detail, typing
command line each time could be very time-consuming and inefficient, so we decided to
use a script language to make this procedure automatically. Since Perl is superior to other
languages in terms of regular expression presentation and it’s execution speed, we chose
Perl to serve this role. The detail is shown in test section.

4.5.4 ANTLR 2.7.5

ANTLR, which stands for Another Tool for Language Recognition, is a language tool
that provides a framework for constructing recognizers, compilers, and translators from
grammatical descriptions containing Java, C#, C++, or Python actions. ANTLR provides
excellent support for tree construction, tree walking, and translation.

4.5.5 Subversion (SVN)
Subversion is an open source application for revision control. Also commonly referred to
as svn or SVN, Subversion is designed specifically to be a modern replacement for CVS.

4.5.6 Putty 0.56

Putty is a free SSH, Telnet, rlogin software, and raw TCP client. It was originally
available only for Windows, but is now also available on various Unix platforms.

We used this to connect to CUNIX machines to check out or add latest files and folders
into SVN share folder. This tool is also recommended and provided by CUIT.

4.5.7 WinSCP 3.7.4

WinSCP (Windows Secure copy) is an open source SFTP client for Microsoft Windows.
Its main function is secure file transfer between a local and a remote computer. Beyond
this, WinSCP offers basic file manager functionality. It uses Secure Shell (SSH) and
supports the legacy SCP protocol in addition to SFTP. This tool was extremely useful for
us to securely download the newest files from SVN shared folder to each team member’s
local Win32 machine. This tool is also recommended and provided by CUIT.

-28 -

5. Architectural Design

5.1 Architecture Diagram

Below is the architecture diagram.

Front end Abstract

Svntax

inputfile.uniga | Tree

v 7
~ 1 7’

~
Exception Processing

Backend

Stock Built-in Portfolio Built-in
Function - Function
Orders Built-in Date Built-in
Function Function

Function-Scope Activation Record

Built-in Function Built-in Function

v

_29-

The UNIGA language translator consists of these components:

Lexer (ParserLexer.g file): the lexer’s role is to recognize strings and characters
in the input UNIGA file and translate them into a stream of tokens. White spaces,
comments and those characters or strings that are not defined in the lexer will be
eliminated later on when constructing the Abstract Syntax Tree.

Parser (ParserLexer.g file): the parser parses the input program file as a stream
of tokens, check for grammar errors, does a syntax analysis of the program file,
and create an Abstract Syntax Tree (AST) which represents the semantic structure
of the program. In the parsing process, rules such as left associativity and operator
precedence are of extreme importance as they resolve language ambiguity issues
that may exist in parsing the program.

Tree Walker (Walker.g file): the tree walker walks through the Abstract Syntax
Tree (AST) to form an intermediate representation of the program in the form of
Intermediate Representation (IR) classes. Walking through the AST lets the
compiler understand the semantics of the program, and enables the translated IR
classes to be formed to be carried out by ANTLR java engine to perform the
program logic.

Input/Output: The application program gets market information stored in XML
format as data input. The application program creates the portfolio data as XML
formatted file. At the end of each day, an updated portfolio data file is created in
XML formatted file. There will be specific system built-in functions created to
perform these tasks respectively.

Exception handling: exception classes are created to handle exceptions, and an

exception line reporter will report which line the exception was thrown displayed
at the console.

-30-

5.2 File System Diagram
Below is the file system structure.

UNIGA folder
i~ System Built-in functions =~ - -- - ---- - mmo— o —m e m oo |

|

|

|

_i | Orders java b:“ Stock java b:" Portfolio java b:{ |
I

v R e e R

I I

I I

- Uhilifies functions ~ — —— -~ == === -— - - oo — oo oo

| Date java B‘ FuncScope java &‘ ErrorException java E

| Scope java H‘ OomnxmAS'I’“ﬁthmes_]ava&‘ GetRealData java
SR SR

Test Folder

1
1 |
1
E ‘huyumga E‘date %‘dlwmonmgz %‘thublemga E
1

| ‘equa].lmga E‘ﬁ)rumga E‘ﬂmmonsumga E‘greater E
—

i 1fumga less.umga s uniga multiply.uniga
| TS s e
! P EFFFFERRFFRREFT
i ‘soope 1.umiga %‘smpe 2 umiga %‘sﬂlmga %‘ E
Data Folder 3 ___ .
T i
. T |
Data/Market Folder _
e | XML Data Files
|
| [acvm o [omm i [esama J
1
! |
i i
_5 ‘DELL_xml ‘ﬁ ‘EDS.xml H ‘I—IPmel b¢ i
1 |
i ‘IBM_xml bi ‘[NTC_xml H ‘MSFI'.xml bi i
T T T
i |
|

_31-

5.3 Trading Process and Data Flow

Below is the diagram of trading process and data flow.

Trading Process and Data Flow

buy "MIEFT" 1000 0 30.50; |

Orders(int type, String stockID, double amount, double stopPrice, double limitPrice) |

Update order (OFDER Szl 1+ add the order entry ‘

if stopPrice=0 & &
LrmitPrice==0
it is hWlarket Order

if stopPrice=0 &&
limitPrice==0
it iz Stop Order

stopPrice = 7 limitPrice =7

if stopPrice=0 &&
limitPrice=0
it iz Stop Limit Order

if stopPrice=0 &&
limitPrice=0
it iz Limit Order

No

low=stop Frice<high

Yes

Mo

lou=lirnit Price <high

low<irmtPrice<high lowi<etop Frice<high

Yes

filled Status = 1
filledPrice = marketPrice
filled Qaantity = amount

filled3tatus =1
filledPrice = stopPrice
filledQuantity = amount

filledBtatuz =1
filledPrice =marketPrice
filledJuantity = arnount

filled3tatus =1
filledPrice = limitPrice or stopPrice
filledQuantity = amount

— ===

——

Update portfolio (PORTFOLIO mnly: 1% increase/decrease cash; 2> addfipdate stock holding ‘

-32-

6. Test Plan

6.1 Testing Overview and Goals

Testing in our project is done on two levels: unit testing and regression testing. Detailed
explanation of the unit testing and regression testing approach will be provided in the
sections below. Unit testing was done for each new language construct added into the
ANTLR paser, lexer, and walker files, while regression testing was done for all language
constructs in the ANTLR grammar files when a new language was added in.

Testing Goals: The goal of unit testing is to ensure individual language constructs gets
parsed correctly in the compiler. The goal of regression is to guarantee newly added
language constructs doesn’t break existing language elements. With unit testing and
regression testing carried throughout the development cycle, the UNIGA compiler will
ensure a comprehensive level of stability when developments are done.

Automation Utilized: Unit testing was mostly done manually to debug new language
construct errors; the level of automation used was mostly using MAKEFILE to automate
the compile and execution of single unit test cases. Regression testing was executed by
conducting batch unit test cases which was automated by using Perl scripts.

All the test codes are listed in the Appendix.
6.2 Unit Testing

Unit testing is conducted to test the correctness of individual language constructs in the
UNIGA grammar. Language constructs being tested for example include: assignment
operators, arithmetic operators, iteration statements (for loop, while loop)... etc.

Our test script reads test cases one by one from “fest” directory and then executes them in
the same order as read in. Sound results are written into sound test result.log with
execution date, time, each test case’s name., and their output On the other hand,
abnormal results are recorded in bad test result.log , also with the execution date, time,
and each test case name, by redirecting stderr stream. Instead of normal outputs, in
bad test result.log, you can check the error messages returned from system.

There are 37 unit test cases in our test suite which covers all of our language’s major
constructs. 31 of them are designed to test each single language elements such as "add",
"assign", "built-in functions", and so on. The other 5 are nested combinations of single
unit cases that are considered important to test. The last test case is a real situation code
under the assumption that clients will place their order using this kind of format.

There are three scenarios in our unit test plan. First scenario is to make sure our grammar
definitions is right. Second scenario is to ensure it pops out error messages or appropriate
messages when it should. Three is to test the combinations of language constructs to
verify they work properly as a whole system.

-33-

The first scenario, test each single unit or two units to ensure that our UNIGA grammar
parsers everything correctly. Each test case is read by Perl program and be executed on
the fly.

Second scenario is to test our grammar’s error handling ability. This basically requires an
exception is thrown if a test case is written using the incorrect grammar.

The last scenario is to check if our grammar as a whole works properly or not. This
means, if correct grammar and incorrect grammar are present in a unit testing file, the
correct part get executed and the incorrect part get parsed and exception be thrown.If
anything abnormal happens, the error will be written into error log using stderr stream by
Perl program.

unit_test.pm: the perl module file that has implementation of tester.

_34-

#!/usr/local/gnu/bin/perl

#use FindBin;

#use lib "$FindBin::Bin/../lib";
my $test _dir = "./test";

sub create unit test log {
open (OUT1, ">sound test result.log"); # open ouput stream
open (OUT2, ">bad test result.log"); # open ouput stream

opendir IN, Stest dir or die "Couldn't open $test dir: $!";
my @files = map { "Stest dir/$ " } grep { /\.uniga$/ }
readdir (IN) ;

closedir IN;

($Second, $Minute, $Hour, Day, SMonth, S$Year, $WeekDay, $DayOfYear, $IsDST) =
localtime (time) ;

SYear += 1900;

Sdate = "S$Hour:S$Minute:$Second, $Month/S$Day/$Year";

‘echo "Last update ($date)" >sound test result.log’;

‘echo "Last update ($date)" >bad test result.log';

$1 =17
foreach S$file (Q@files) {
sound log

‘echo >>sound test result.log’;
‘echo +++++++++ test case $i +++++++++ >>sound test result.log’;
‘echo $file >>sound test result.log’;
‘java Main $file 1>>sound test result.log 2>>null’;
print OUT1 "\n";

bad log
‘echo >>bad test result.log’;
‘echo +++++++++ test case $i +++++++++ >>bad test result.log’;
‘echo $file >>bad test result.log’;
‘java Main $file 2>>bad test result.log’;
print OUT2 "\n";
Bal-kg

}

close (OUT1);
close (OUT2);

uniga.pl: the base perl program that calls the function in unit test.pm and make use of it.

#!/usr/local/gnu/bin/perl
use unit test;

create_unit test log();

-35-

Examples of individual unit test cases are listed below:

buy.uniga

main ()
{

buy "MSFT" 1000 0 28.5;
}

sell.uniga

main ()

{

println "sell 1000 shares Microsoft without setting stop and limit prices";
sell "MSFT" 1000 0 O;

println "sell 500 shares Microsoft with stop price 28.5 and limit price 28.8";
sell "MSFT" 500 28.5 28.8;

assign.uniga
main ()
{
double a=1;
if a==1 then{

return 1;
} else { return 0; }

for.uniga

main ()
{
double a=0;

double 1i;

for (i=0;i<5;i=i+1) {
a=a+i;
println a;
a=a;

}
if a==10 then{
return 1;
} else {
return 0;

}

while.uniga

main ()
{
double a,i=0;
while (i<5) {
a=a+i;
i=i+1;
}
if a==10 then{
return 1;
} else {
return 0;

}

-36 -

return.uniga

double testReturn (double 1) {
return i+1;

}

main ()

{
double i=0;
if testReturn(i)-i>0 then print "correct return";
else print "incorrect return";

portfolio.uniga

main ()
{
double s;
s = sum();
print "Sum of portfolio: ";
print s;
println " ";
println "-———-m——m e ;

buy "MSFT" 500 10.00 0;
buy "MSFT" 500 28.50 0;
sell "INTC" 500 0 O;
buy "HPQ" 500 0 O;

s = sum();

print "Sum of portfolio: ";
print s;

println " ";

println "-------————————————— oo ",

double r;
r=pL(;
print "Profit and loss: ";
print r;
println
println "-------—-—m——————— o ;

non.
’

6.3 Regression Testing

Regression testing is conducted to ensure newly added UNIGA language constructs don’t
break existing language components. As the number of language elements we need to do
regression testing increased following our advancing development cycle, we used Perl
scripts to automate the regression task.

First regression.pl executes all the unit test cases again, stores the results in
regression_temp.log file. Next, compare this new log with the original
bad_test result.log and if any regression bugs happened, it will be explicitly recorded in
regression_test resultlog. Rgression_test result.log stores all the regression tests’
results so far with the test-date.

-37-

regression.pl: this program reports the results of regression tests.

#
COMS 4115 test script introduced by Yu Song ys2310@columbia. edu
#
#!/usr/local/gnu/bin/perl

#use FindBin;

#use lib ”“$FindBin::Bin/../lib”;
my $test dir = 7. /test”;

opendir IN, $test dir or die “Couldn’t open $test dir: $!”;
my @iles = map { "$test dir/$ 7 } grep { /\.uniga$/ }
readdir (IN) ;

closedir IN;

($Second, $Minute, $Hour, $Day, $Month, $Year, $WeekDay, $DayOfYear, $IsDST) = localtime (time) ;
$Year += 1900;

$date = “$Hour:$Minute:$Second, $Month/$Day/$Year”;

“echo “Last update ($date)” dregression temp. log ;

“echo $date >>regression test result.log ;

$i=1,
foreach §file (@files) {
regression log

“echo >>regression temp. log ;
“echo +++++++++ test case $i +++++++++ Ddregression temp. log
“echo $file >>regression temp. log ;
“java Main $file 2>>regression temp. log ;
$i++;

}

open (INI, “<bad_test_result.log”); # open ouput stream
open(IN2, “<regression temp.log”); # open ouput stream
@ = ();
@ = (;

while (KIND>) {

push(@a, $);
}
while (<IN2>) {
push(@, $);
1

close (IN1);
close (IN2);

foreach §file (@files) {
Stempl = 7

$temp2 = 77

foreach $a (@a) {
chomp $file;

chomp $a;

if ($a eq $file) {
$templ = $a;

1

elsif ($a =~ /\+/) {

-38 -

E=S

“echo

”

if ($templ eq ””) {

nothing
} else {
last;
}
} else {
if ($templ eq ””) {
nothing
} else {
$templ = $templ.” ”. $a;
}
}
}#tend of foreach @a
foreach $b (@) {
chomp $b;
if ($b eq $file) {
$temp2 = $b;
}

elsif ($b =~ /\+/) {
if ($temp2 eq ””) {

nothing
} else {
last;
}
} else {
if ($temp2 eq 7”) {
nothing
} else {
$temp2 = $temp2.” 7. $b;
1
}

}#tend of foreach @b
print $templ. \n”;
print $temp2. "\n”;
“touch regression test result.log ;
if (length($temp2) > length($templ)) {
print $file.” regression test FAILED\n”;
Techo Tttt 47 DDregression test result. log
“echo $file.” regression test FAILED” >>regression test result.log ;
“echo T+ttt DDTegression test result. log

} else {

print $file.” regression test past\n”;

“echo $file.” regression test past”>>regression test result.log ;
}#tend of if

\n”>>regression test result. log ;

-39

7. Lessons Learned

Jiahua Ni:

Use CVN to control all the files, but everyone should backup the current version before
making any significant changes. There was one time we found the current version in
CVN didn’t work properly, however, we failed to backup the previous one and had to
spend much time on recovering previous one manually.

Grammar file should be generated before the tree parser file. We got the error by Antlr
“grammar file should be the last” when we split the grammar file with the tree parser file.
Furthermore, Antlr doesn’t continue on generating. We had to combine these two files
again and then take much effort on finding the problem.

Start from a small working grammar core and add other components step by step. Thus,
you can easily find out what component in the grammar caused an error rather than
having to go through hundreds of lines to find the bug. For example, we didn’t implement
for/while/if-else/function/variable scope at first, and we start from a quite small working
grammar core.

We were confused with expression and statement at first, and put the
“open/close/high/low” clause in the statement part. Thus, we were not able to get the
values of these clauses and assigned to some variable. Actually, those clauses which
might be assigned to some variable should be put in the expression part.

When there are errors in the programs after AST tree is built, it is better for the interpreter
to give the error information which includes the exact line number. However, the default
function getLine() in CommonAST class always returns 0. Then, we derive a subclass of
CommonAST class and use ASTFactory to handle this situation.

It is better to confirm the most part of the grammar as well as the tree parser before doing
the back-end part. Thus, we are quite sure what is needed in the back-end part.

Yang Sha:

First of all, I learnt how to build up a large system from ground. I could hardly
understand the grammars introduced on the paper and lecture notes, until implementing a
small sample on my own computer. And by studying the codes and running the demo, I
started to build up a very simple grammar file of UNIGA, which only dealt with “int”
data format and “if” statement.

As the time went by, our progress seemed pretty fluently. However, one day, when we
move a new folder onto the SVN server, the system cracked down. The reason was due to
the lack of space on CUNIX server, where we deployed the SVN server. Since none of us
kept the latest version, we almost lost all the files modified in the past month. It is,

- 40 -

actually, a perfect case on disaster recovery. From then on, we kept a backup on another
server as a backup, and all the daily progress were recorded.

Another important lesson I learnt is to do the testing as early as possible, and at the end of
each development stage, there should be enough time arranged for unit testing and
regression testing. Sometimes one of us forgot to do the testing before uploading the file,
and when the next person modified the file, it was pretty hard to find out the bugs inside
the codes written by others. Spending half of the time for testing seemed to be a waste of
time during the development; however, it can accelerate the overall progress
tremendously.

Jian Pan:

Although we gained experiences on handling large scale development projects in
Advanced Software Engineering last semester, there were still many things learned by
doing the PLT project in this course.

First, add at least a week more to your originally planned schedule when trying to write
your first parser, lexer, walker, and also for getting yourself used to ANTLR. Although
ANTLR has already automated many things for you in building up a well functioning
compiler, there is always a learning curve at the beginning, especially for building a
compiler. The beginning part may seem slow sometimes but I guess that’s just the way it
is, after you’ve come up with your first working parser, lexer, walker that can parse a
simple assignment expression and get out the correct result, you may start to feel more
comfortable and start to be on the fast track. So be patient and add a week’s more time to
your schedule. Also start from a small core and increment functionalities gradually. In
our project, we started from variable declaration, assignment and moved scope and
function-scope to the last, because scoping and function scoping is more complex, being
well versed in debugging with ANTLR grammar will make debugging the later much
easier.

Second, for testing, although it seemed to belong to rather late stage of the development
process, but try to start early because if in case debugging the parser, lexer and walker
takes up more time than expected, you might find that in the end you won’t have that
extra week to devote to testing, which is just as important to the overall project. The way
we did testing, was we had two persons assigned to writing the unit testing cases for
different language constructs very early on, almost during the middle of our entire
project’s schedule, once the framework is there, if the language constructs changes, we
just modify the unit cases accordingly and we can unit test our newest changes. Testing
isn’t what you do at the last minute, it’s what you would do along the way of
development, if you’ve used your composed test cases to verify your language
development, it’s more likely at the end that your entire language construct will pass
many of the unit tests. The above principle also applies to regression testing, which
would benefit you to discover potential bugs along the way instead of finding out
something at the very end.

_41 -

Thirdly, about team work principles and communications. The general things to keep in
mind are: know your team members and assign task to their expertise accordingly.
Because four members of our group have worked in a project team previously, we had
little difficulty assessing this. Also, sketch out a schedule and try your best to reach every
milestone, single milestone delays may propagate and grow into delays you can’t handle.
We managed to keep our schedules on track for almost all milestones by sending
reminder emails to every team member and requesting replies to assess progress. Also
frequent communication among team members help to identify common problems early,
instead of having last minute surprises. Having a modularized task approach also helped a
lot and seems to be a good approach. We made sure every team member in our team has
a good understanding of the parser, lexer and walker, and then dispatch each member to
work on either improving the front end (parser, lexer, walker), or construct add-in
functions/ testing parts. But understanding the mechanism of the parser, lexer and walker
1s the common base, each member could do much better on their section of the task after
they’ve had a good understanding of this part.

Overall, I’ve learned a lot from this course and the project, and getting into the details of
designing all the constructs of a language would make me understand much better the
elements that would impact a program’s performance.

Yu Song:

Prior to starting our project, we decided what we'd exactly like to make and each
individual's role. Everybody in our team had a brainstorm, and originally there were
about 30 ideas. We discussed very carefully and finally narrowed down to the one gained
consensus of all of our five.

As such, we finished our proposal, LRM, final report template and basic functionality
supported by UNIGA language by March. Since each of us was clear what s/he should do,
with little interference, we could concentrate on our tasks.

Also, choosing a team leader is a really crucial part while doing a project as a team. This
is because, at least for me, I felt that our team leader was the one look over the whole
project progress and, when it stagnates, spur us on. Our team leader was nice in terms of
managing team members as well. We gathered together to have a meeting at least once a
week. When we were becoming dull during late time, she was also the one who
reproached us for the slack.

As summary, [would say

One. Start brainstorming ASAP

Two. Choose a responsible leader

47 -

Three. Decide each member's role and avoid interference
Four. Meet regularly and keep making progress
Leon Wu:

One thing we did really well was effective time management. In the first week of the
semester, we decided group organization and one hour weekly meeting time on every
Monday right before the class. The weekly meeting helped us a lot. Even when there is
no immediate deliverable due in the near weeks, we still have the meeting to discuss and
do brainstorming for the project. Our steady pace throughout the semester helped us to
work out the prototype far earlier than any other team and nearly completion three weeks
earlier than final deadline. There was no last minute rush work in the project.

We tried to work efficiently as a group. The Columbia CUNIX servers are equipped with
Subversion source control. Any student with CUID can login and use it, although most
people don’t know that it is provided for free. In the second week of the semester, I
managed to set up Subversion source code control repository and granted team members
permission to work on it. I also wrote a Subversion user manual, which is a cheat sheet of
various SVN commands because other team members were new to Subversion. Soon, we
were able to exchange source code, documents and other materials via Subversion.
Although some glitches and versioning issues arose from Subversion due to its system
design, overall we saved a lot of time and worked much more efficiently.

Development is tedious. We tried to simplify the development process with the help of
effective development framework. Development involves multiple steps. The most
repetitive work during development includes development environment login/set up,
compilation and testing. At the initial stage of the coding, we worked out a development
framework. We classified the development environments to Windows XP and Columbia
CUNIX Unix/Linux server. We standardized the development environments and a simple
README was written. It included the commands to set up two different environments
such as CLASSPATH setup, steps to do compilation, steps to run the UNIGA test
programs. With the clear instructions, any team member can quickly get into coding and
testing mode whenever a Windows PC or CUNIX SSH connection is available. Soon, I
also added Makefile, which further simplified the compilation process.

UNIGA, acronym of our team member’s last character of last names, is designed to be a
financial trading language with flexibility. During the system architecture design, we
discussed and debated how we can make the implementation agile and make the system
easy to be ported to other system. We decided to use XML file format to hold domain
specific information such as Portfolio (cash and stock holdings), Stock (historic and
current stock pricing information), and Orders (records of all submitted order
transactions). There are only small amount of standard Java interface calls in the Antlr
walker.g file. We developed the implementation Java files in a modularized fashion so
that it is easy to customize the system when using different data source such as relational
database or web services.

_43 -

Overall, I think the project has been an exciting exploration and learning experience. Our
team members put their best effort onto it. Although there are still a lot of places to be
improved, we believe our UNIGA is a good prototype financial trading language.

8. Appendix

Following are complete code listings for the UNIGA project.

_44 -

ParserLexer.g
TELETEIEE i
/*

* Parser

* Aut hor: Jiahua N, Yang Sha, Jian Pan

TILLEEE bbb iriiiiiind
cl ass Si npParser extends Parser;

options

export Vocab=Si npPar ser ;
bui | dAST = true;
k = 2;

t okens

STATEMENT;
DECLS;
SUBPRCOG,
FUNCDEF,;
FOREXPR;
FUNC CALL;
ARG LI ST;
EXPR_LI ST;
}

program functions EOF!;
functions: (function)* main;
mai n: "mai n"” LPAREN! RPAREN subprogram

function: ret ID LPAREN decls RPAREN' subprogram
{#function = #([FUNCDEF, "FUNCDEF"], function);};

decls : (declo (COWA! declo)*
|){ #decls = #([DECLS, "DECLS"], #decls); } ;

declo : ("double"”) ID

subprogram : LBRACE! (stnt)* RBRACE!
{#subprogram = #([SUBPRCG, " SUBPROG'], subprogran;};

ret: "double" | "void";

stm :(bool

buyst nt

var st nt

sel I stnt

pt st nm

ptl nstnt
returnstnt
"break") SEM!
subpr ogram
whi | est m
ifstnt
forstnt

hol di ngst mt

ptstnt: "print"A (STRING | expr);
ptinstnt: "println"~ (STRING | expr);
buystnt: "buy"” STRI NG NUMBER exprl expr?2;
sellstnt:"sell"~ STRING NUMBER expr1l expr2;

_45 -

hi ghstnt: " hi gh"~ STRI NG LBRACE! NUMBER RBRACE! ;
lowstnt: "l ow” STRI NG LBRACE! NUMBER RBRACE! ;
openstnt: "open"” STRI NG LBRACE! expr RBRACE!,
closestnt:"close"” STRI NG LBRACE! NUVBER RBRACE! ;
volumstnt: "volune"” STRI NG LBRACE! NUVBER RBRACE! ;
marketstnt: "market"” STRI NG
hol di ngstmt: "hol di ngs" SEM!;
hol di ngtypestm : "hol di ngSt ockType" LPAREN RPAREN ;
plstnmt: "pl" LPAREN RPAREN ;
sunstnt: "suni’ LPAREN RPAREN ;
avgstnm: "average"” LPAREN STRI NG RPAREN ;
whilestnt: "while"” LPAREN! bool RPAREN subprogram ;
forstnt : "for"~ LPAREN forexpr SEM!

forexpr SEM!

forexpr RPAREN stnt;
forexpr : (((bool)|/*nothing*/)) {#forexpr = #([FOREXPR, "FOREXPR'], forexpr);

returnstnt : “"return"” (bool)?;
dat eexpr:"date"” LSQ NUMBER RSQ ;

/* Function related definition */
func_call _stnt : 1D LPAREN! expr _|ist RPAREN

{#func_cal |l _stmt = #([FUNC_CALL, "FUNC CALL"],
func_call _stnt);}

1

expr _list
: (((bool) (COWA! (bool))*)
!/*nothi ng*/)

)

ifstnt:"if"”~ bool "then"! stnt

(options {greedy=true;} : "else"! stnt)?;
var st nt
: ("doubl e"”) args
ar gs
: arg (COWA! arg)*
arg : 1D (ASSI G\ bool) ?

bool: join(ORjoin)*

join: equality(AND*equality)*;
equality: rel (EQ‘rel)*;

rel: expr ((LTA| GT™) expr) *;

expr : (I D ASSI G\ exprl) | exprl;

- 46 -

I

exprl : expr2 ((PLUS | M NUSM) expr2)* ;
expr2 : expr3 ((TIMES* | DIV?) expr3)* ;

expr3

ID

(" oexpr ")"!
NUVBER

"true"

"fal se"

openst nt

cl osest nt

hi ghst m

| owst nt

vol umst nt

dat eexpr
func_call _stnt
pl st

sunst nt

avgst m

mar ket st nt

hol di ngt ypest mt

FEEEEEEErErr b r bbb bbb b r b
/*

* Lexer

* Aut hor: Jiahua N, Yang Sha

*/

TEEELEEEIEEr bbb r i rrrrrrirrrrn
cl ass Si mpLexer extends Lexer;

options {
export Vocab=Si npPar ser ;
testLiterals = fal se;
k = 2;
charVocabulary = "\3".."'\377";
}

[* Expr essi on*/

PLUS : S
M NUS : '
Tl MVES
DIV :
ASSI GN
LPAREN :
RPAREN :
LSQ
RSQ
SEM o
EQ ==,

COLON: et
LT: '
GT:
AND:
OR:
LBRACE:
RBRACE:
COVIVA:

—rN— N %

TUTTTTTIRVA

protected LETTER (ta'..'z" | "A.."Z)

protected DIA T : 0.9

ID options { testLiterals = tru }: LETTER (LETTER | DIGAT | '_")* ;
NUMBER : (DAD+ ("." (DAT)+)7?;

STRI'\G: Illl! (~(IIII | l\nl) | (IIII! llll))* Illl!;
W5 : ¢ vt] o'\nt { newine(); } |
"\r'){ $set Type(Token. SKIP); }

_47 -

Waker.g

THEEEET P rri i
/*
* Aut hor: Yang Sha, Jiahua N, Jian Pan
* Ml ker
*/
THLEEETPEL bbb rri il
cl ass Si npwal ker extends TreeParser;
options {
i mpor t Vocab=Si npPar ser ;

{
Scope scope;
static int RETURN TRUE=1;
static int BREAK TRUE=2;
String s=null;

}

program

} : (function)* main;

function {double return_type=0;}: #(FUNCDEF return_type = ret |ID decls
subprogram .) {FuncScope. functionDefi ne(#l D. get Text(), #subprogram
return_type);};

ret returns [double r=0]: ("void" {r=0;}) | ("double" {r=1;});
decls : #(DECLS args);
args : arg args| ;

arg : #("double" 1D) {FuncScope.registerArgunment (#l D.get Text());}

main {scope = ActivationRecord.create(null);double r;}: #("main" r=subprogram;

funexecute returns [double r=0]: #(SUBPROG r=stnts){if(r==RETURN_TRUE) return
RETURN_TRUE; };

subprogram returns [double r=0]: #(SUBPROG {scope.enter_scope();}r=stnts) {if
(r==RETURN_TRUE) return RETURN TRUE; scope.|eave_scope();};

stnts returns [double r= 0 1]: (r=stm {
i f(r==RETURN_TRUE) return RETURN TRUE;
i f (r==BREAK_TRUE) return BREAK TRUE;}

)%
st nt returns [doubl e r=0]

double a, b, c;
doubl e price, lprice;
}
r= subprogram {
if(r==RETURN_TRUE) return RETURN TRUE;
i f (r==BREAK_TRUE) return BREAK TRUE;

}
#("if" a=pred: expr {
AST thenpart = pred. get Next Sibling();
AST el separt = thenpart. get Next Sibling();

if (a!=0) r = stn(thenpart);
else if (elsepart '=null) r = stmt (el separt);

_48 -

elser = 0;
| #(" doubl e" (‘assi gnval ue) *)
| #(" hol di ngs" {Portfolio port=new Portfolio();port.holdings();}
)
| #("whi | e" while_expr:. |oop_body:.
{

whil e (expr(#while_expr)!=0)
{
r=stnt (#l oop_body) ;

i f(r==RETURN_TRUE) return RETURN_TRUE;
i f (r==BREAK_TRUE) br eak;

[#("for" {a=1;}

#(FOREXPR el:. {if(#el!'=null){this.stm ((#el));}})
#(FOREXPR e2:. {if(#e2!=null){this.stm ((#e2));}})
#(FOREXPR €3:.) body:.

whi | e(al! =0)

i f((#body)!=null){
r=stnt ((#body));
i f (r==RETURN_TRUE) return RETURN TRUE;
i f (r ==BREAK_TRUE) br eak;

i}f((#e3)!=nul 1){
stnt ((#e3));

%f((#eZ)!:nuI 1){
) a=expr ((#e2));

}

)
| " break"{r=BREAK TRUE; }
| #("return" (exp:.)? {if(#exp==null)FuncScope. addRet urnVal ue(null);
el se FuncScope. addRet ur nVal ue(new
Doubl e(expr (#exp)));

return RETURN_TRUE; }

)
| #("print"
(s:STRING { Systemout.print(#s.getText()); }
| a=expr { Systemout.print(a);)
| #("println"

(z: STRING { Systemout.println(#z.getText()); }
| a=expr { Systemout.printin(a); }))
#(" buy"
(m STRI NG p: NUMBER pri ce=bprice: expr |price=gprice:expr{
try{
if(price<0) {Systemout.println("Line:"+#m getLine()+" Invalid Stop
Price."); Systemexit(0);}
if(lprice<0){Systemout.println("Line:"+#mgetLine()+" Invalid Limt
Price."); Systemexit(0);}
Orders nmyOrder = new Orders(0, #m get Text (), expr(p), price, lprice);
}catch(Exception e){Systemout.println("error opening
file");}}))
#("sel "
(n: STRING g: NUMBER price=sprice: expr |price=zprice:expr{
try{
i f(price<0) {
Systemout. println("Line:"+#n.getLine()+" Invalid Stop
Price.");
Systemexit(0);}
i f(lprice<0){
Systemout.println("Line:"+#n.getLine()+" Invalid Limt

Price.");
Systemexit(0);}

_49 -

O ders nyOrder = new Orders(1, #n.getText(),expr(q), price, lprice);

}catch(Exception e){
Systemout.println("error opening file");}}

))

| r=expr

1

assi gnval ue{doubl e a;}:

#(ASSIGN |1 D
{if(scope.check_in _present _scope(#lD. get Text())==true)
{Systemout.println("Line:"+#lD. getLine()+" Variable "
+#I D. get Text ()+ " already defined"); Systemexit(0);}}
a=expr {
scope. add_i n_present _scope(#l D. get Text (), a);
}
)

| 1D {if(scope.check_in_present_scope(#lD. get Text())==true)
{

System out. println("Line:"+#l D. getLine()+" Variable
+#| D. get Text ()+ " al ready defined");

System exit(0);
}

scope. add_i n_present _scope(#l D. get Text (), 0);
s

expr returns [double r=0;]
{ double a,b; }
#(ASSIGN |1 D
{

i f(scope. get_vari abl e(#I D. get Text ())==nul |)

Systemout. println("Line:"+# D. getLine()+" The

vari abl e "+#I D. get Text () +" does not exist");
Systemexit(0);}}
a=expr {scope.add_or_nodi fy(#I D. get Text (), a);

)

| #("open" (openid: STRI NG {
AST bar AgoPart = openi d. get Next Si bl i ng();

if (barAgoPart!= null) a = expr(barAgoPart);
else a = 0;

Stock record = new St ock(#openi d. get Text());
r=record. get St ockPri ce(2, expr (barAgoPart));

}
))

| #("close" (closeid: STRING {
AST bar AgoPart = cl osei d. get Next Si bl i ng();

if (barAgoPart!= null) a = expr(barAgoPart);
else a = 0;

Stock record = new Stock(#cl oseid.getText());
r=record. get St ockPri ce(3, expr (barAgoPart));

)
| #("hol di ngSt ockType" {Portfolio typeAnm =new Portfolio();
r =t ypeAnt . hol di ngSt ockType(); }

-50 -

)

| #("pl" {Portfolio pllt=new Portfolio(); r=plit.pl();}

| #("sum® {Portfolio sumt = new Portfolio(); r=sumt.sun();}
)

| #("average"
(synbol ID: STRING {Stock avglt = new Stock(#synbol I D. get Text());
r=avglt. average(#synbol I D.get Text());})

)
| #("market"
(sym D: STRING {try{
Cet Real Dat a mar ket Data = new Get Real Dat a() ;
r=mar ket Dat a. di spl ayl t ens(#symnl D. get Text ());
}cat ch(
Exception e)
{System out. println("Line:"+#syml D. get Li ne() +"
nmar ket data unavail able.");
| }}

)
| #("high" (highid: STRING {
AST bar AgoPart = hi ghi d. get Next Si bl i ng();

if (barAgoPart!= null) a = expr(barAgoPart);
else a = 0;

Stock record = new St ock(#highid.getText());
r=record. get St ockPri ce(0, expr (barAgoPart));

}
))
| #("1ow' (1low d:STRI NG {
AST bar AgoPart = | ow d. get Next Si bl i ng();

if (barAgoPart!= null) a = expr(barAgoPart);
else a = 0;

Stock record = new Stock(#l ow d. get Text());
r=record. get St ockPrice(1, expr(barAgoPart));

))
| #("volunme" (volumid: STRI NG {
AST bar AgoPart = vol umi d. get Next Si bl i ng() ;

if (barAgoPart!= null) a = expr(barAgoPart);
else a = 0;

Stock record = new Stock(#vol umi d. get Text());
r=record. get St ockPri ce(4, expr (barAgoPart));

}
))

| #("date" NUVBER{
a =Doubl e. val ueOr (#NUMBER. get Text ()). doubl eVal ue() ;
i f((a>20080000)
| | (a<19000000)){System out. printl n(
"Li ne: " +#NUMBER. get Li ne() +" Date invalid");
System exit(0);

}
Dat e newdat e=new Dat e(a) ;
r=newdat e. get uni gadat e() ;

)

| #(PLUS a=expr b=expr {

try{
r=a+b;
} cat ch(Nunber For mat Excepti on e)

-51-

—_—————

)
#(M NUS a=expr b=expr { r = a - b; }
#(TI MES a=expr b=expr { r = a * b; })
V a=expr b=expr {

#(DI

#(EQ a=expr b=expr
#(LT a=expr b=expr
#(GT a=expr b=expr

{System out. println("Line:"+#PLUS. get Li ne() +"
invalid variabl es");
System exit(0);

—

}

i f(b==0.0){
System out. println("Line:"+#Dl V. get Li ne() +"
Di vi dent cannot be zero");
System exit(0);

}
r =al/l b;}
E r =(a==b)?1:0; })

r =(a<b)?1:0; })
{ r =(a>b)?1:0;

#(AND a=expr b=expr { if((a!'=0.0) && (b!'=0.0))r=1;else r=0; })

#(OR a=expr b=expr

{ if((a==0.0) && (b==0.0))r=0;else r=1; })

#(FUNC_CALL I D (r=expr {FuncScope.setArgunment(r);})*){

r=0;

scope = ActivationRecord. create(scope);

scope. ent er _scope();

r=FuncScope. funcCal | (this, #lD.getText(), scope);
scope. | eave_scope();

scope = ActivationRecord. renove(scope);}

1D {
Doubl e

t=scope. get _vari abl e(#I D. get Text ());

if(t==null)

el se
{
}
}
true" {r=1;}
"false" {r=0;}
#(NUMBER { r =

System out. println("Line:"+#l D. getLine()+
' Variable "+#| D.get Text() +" not found");
Systemexit(1);

r = t.doubl eval ue();

Doubl e. val ueO (#NUMBER. get Text ()) . doubl eVal ue(); })

-52 -

Main.java
/ *

* Aut hor: Leon Wi, Yang Sha
* Main program for UN GA
*/

inport java.io.*;

i mport antlr. ConmonAST,;

import antlr.collections. AST,;

i nport antlr.ASTFactory;

i mport antlr.RecognitionException;
import antlr. TokenStreanExcepti on;

i nport antlr.TokenStream OExcepti on;

class Main {
public static void main(String[] args) {
if (args.length >= 1)
execFil e(args[args.length-1]);
el se
Systemout.printIn(“input file name”);

Systemexit(0);

public static void execFile(String filenane) {

try
InputStreaminput = (null !'=filenane) ?
(I'nput Stream) new Fil el nputStrean(fil enane)
(I'nput Stream Systemin;
Si npLexer | exer = new SinpLexer(input);
Si npPar ser parser = new SinpParser(|exer);
ASTFactory factory = new ASTFactory();

factory. set ASTNoded ass(CommonASTW t hLi nes. cl ass) ;
par ser. set ASTFactory(factory);

parser. progran();
/1 CommpnAST tree = (ComoDNAST) par ser. get AST() ;
AST tree=parser.get AST();

Systemout.printin("------ AST tree------ \n"+tree.toStringList()+"\n-----
End of AST----- \n");

Si npWal ker wal ker = new Si npWal ker () ;
wal ker . progran(tree);
/1 \al ker caller code here TO BE ADDED
} catch(|1 OCkxception e) {
Systemerr.printin("Error in /O " + e);
} catch(RecognitionException e) {
Systemerr.printin("Error in Recognition: " + e);
} catch(TokenStreanException e) {

Systemerr.printin("Error in Token stream " + e);

-53-

} catch(RuntinmeException e) {
Systemerr.printin("Error in Runtinme: " + e);
e.printStackTrace();
} catch(Exception e) {
Systemout.printin("error!!");
Systemerr.printin("Error: " + e);

e.printStackTrace();

Orders.java
/ *

* Aut hor: Leon Wi

* File name: Orders.java

* Process order information
*/

import java.io.*;

i mport java.util.*

i nport javax.xml .parsers.*;

i nport javax.xm .transform?*;

i mport javax.xmnl .transform dom DOVSour ce;
import javax.xm .transform stream StreanResult;
i mport org.xnl.sax.*;

i mport org.w3c.dom *;

public class Orders{

String filename = new String("data/ ORDERS. xm ") ;
String[] orderType = {"buy", "sell"};

public Oders(){
}

public Orders(int type, String stocklD, double anount, double stopPrice,
double limtPrice){

try

Docunent Bui | der Fact ory docBui |l der Factory =
Docunent Bui | der Fact ory. newl nst ance() ;
Docunent Bui | der docBui | der =
docBui | der Fact ory. newDocunent Bui | der () ;
Docunent docurment = docBuil der. parse(new File(filenane));
docunent . get Docunent El enent (). normal i ze();

/'l get the root of the docunent
El enent root = docunent. get Docunent El ement () ;

/'l build a new order
El enent newDate = document. createEl enent("Date");
newDat e. appendChi | d(

docunent . cr eat eText Node(getDate()));

El enent newType = document. createEl enent("Type");
newType. appendChi | d(
docunent . cr eat eText Node(order Type[type]));

El ement newl D = docunent. createEl ement("ID");
newl D. appendChi | d(docunent. creat eText Node(stocklD));

_54-

El enent newAnmount = docunent. creat eEl ement(" Anount”);

newAnount . appendChi | d(docunent . cr eat eText Node(Doubl e. t
oString(anmount)));

El enent newSt op = docunent. createEl enent ("Stop");
Text stopText =

docunent . cr eat eText Node(Doubl e.toString(stopPrice));
newSt op. appendChi | d(stopText);

El enent newlLimit = docunent.createEl ement("Limt");
Text limtText =

docunent . cr eat eText Node(Double.toString(limtPrice));
newlLi mit.appendChild(limtText);

A R Order Fullfilment LogicC------------------------
o *)
/1 determine fill status and fill price
StrlngfllledStatus: "o";

double filledPrice 0.0;

/1 market order: automaticly filled at market price = (high + low)/2 with
rounding to 2 digit decimal
if (stopPrice==0 &&Ilthrlce =0) {
filledStatus = "1"
Stock sk = new St ock(st ockl D) ;

filledPrice = Math.rint(100.0 *
((sk. get StockPrice(0, 0)+sk. get StockPrice(1,0)
)/2)) / 100.0;

}
/1 limt order: fill if low< |limt price < high, filled price =1limt
price
if (stopPrice==0 && linitPrice>0){
Stock sk = new St ock(stocklD);
if (limtPrice > sk.getStockPrice(1,0) & limtPrice <
sk. get St ockPrice(0, 0)){
/'l filled
filledStatus = "1";
filledPrice = limtPrice;
} else {
/1 not filled
filledStatus = "0";
filledPrice = 0.0;
}
}
/1 stop order: fill if low < stop price < high, filled price = stop
price
if (stopPrice>0 & & limtPrice==0){
Stock sk = new St ock(stocklD);
if (stopPrice > sk.getStockPrice(1,0) && stopPrice
<
sk. get St ockPrice(0, 0)){
/1 filled
filledStatus = "1";
filledPrice = stopPrice;
} else {
/1 not filled
filledStatus = "0";
filledPrice = 0.0;
}
}
/l stop limt order: I| it price take precedence
if (stopPrice>0 && limtPrice>0){

Stock sk = new St ck(st ockl D);

-55-

8");

if (limtPrice > sk.getStockPrice(1,0) & limtPrice <
sk. get St ockPrice(0, 0)){

/1 filled
filledStatus = "1";
filledPrice = limtPrice;
}else if (stopPrice > sk.getStockPrice(1,0) &&
stopPrice < sk.getStockPrice(0,0)){
/1 filled
filledStatus = "1";
filledPrice = stopPrice;
}el sef
/1 not filled
filledStatus = "0";
filledPrice = 0.0;
}

—————————————————— End of Order Fullfilment LogiC----------------

El ement newFil | edStatus =
docunent . createEl ement("Fill edStatus");

newFi | | edSt at us. appendChi | d(documnent . cr eat eText Node(fille
dStatus));

El ement newFil | edPrice =
docurnent . createEl ement ("Fi |l | edPrice");

newFi | | edPri ce. appendChi | d(docunent. creat eText Node(Doubl
e.toString(filledPrice)));

El enent newOrder = docunent.createEl ement("Record");
newOr der . appendChi | d(newDate);

newOr der . appendChi | d(docunent . cr eat eText Node("\n"));
newOr der . appendChi | d(newType);

newOr der . appendChi | d(docunent . cr eat eText Node("\n"));
newOr der . appendChil d(newi D);

newOr der . appendChi | d(docunent . cr eat eText Node("\n"));
newOr der . appendChi | d(newArmount) ;

newOr der . appendChi | d(docunent . cr eat eText Node("\n"));
newOr der . appendChi | d(newStop);

newOr der . appendChi | d(docunent . cr eat eText Node("\n"));
newOr der . appendChi l d(newLimt);

newOr der . appendChi | d(docunent . cr eat eText Node("\n"));
newOr der . appendChi | d(newFi |l | edStatus);

newOr der . appendChi | d(docunent . cr eat eText Node("\n"));
newOr der . appendChi l d(newFill edPrice);

newOr der . appendChi | d(docunent . cr eat eText Node("\n"));

/1 Add the new order to the root

root . appendChi | d(newOr der) ;

root . appendChi | d(docunent . cr eat eText Node("\n"));
docunent . get Docunent El enent (). normal i ze();

/1 Wite out the XM
TransfornerFactory tf = TransfornerFactory. new nstance();
Transforner transformer = tf.newlransforner();
DOVBour ce source = new DOVBour ce(docunent) ;
transforner. set Qut put Property(Qut put Keys. ENCODI NG, " UTF-

transforner. set Qut put Property(Qut put Keys. | NDENT, "yes");
PrintWiter pw = new PrintWiter(new

Fil eQut put Strean(fil enane));
StreanResult result = new StreanResult(pw);
transforner.transforn(source, result);
pw. cl ose();

/1l Print out order details
Systemout.println("------------“--“-“------------ ");
System out. println("Date:

"+newDat e. get Fi rst Chi | d() . get NodeVal ue());

-56 -

Systemout.println("Oder Type:

"+newType. get Fi rst Chi |l d(). get NodeVal ue());
Systemout.println("Stock ID:

"+newl D. get Fi rst Chi | d() . get NodeVal ue());

System out. printl n("Amount:

"+newAnount . get Fi rst Chi | d() . get NodeVal ue());
Systemout.println("Stop Price:

"+newSt op. get Fi rst Chi | d() . get NodeVal ue());
Systemout.println("Limt Price:

"+newLi m t.get FirstChild().getNodeVal ue());
Systemout.printIn("Filled Status:

"+newFi | | edSt at us. get Fi rst Chi |l d(). get NodeVal ue());
Systemout.printIn("Filled Price:

"+newfFi | | edPrice. getFirstChild().getNodeVal ue());

Systemout.printin("------------------------------ \'n

/1 Update Portfolio
if (filledStatus.equals("1")){
Portfolio po = new Portfolio();
po. newOr der (get Date(), type, stocklD, amount,
filledPrice);
}

} catch(Exception e)
e.printStackTrace();

}
}
protected String getDate(){
Cal endar cal = new GegorianCal endar () ;
int day = cal.get(Cal endar. DAY_OF _MONTH);
int nmonth = cal . get (Cal endar. MONTH) +1;
int year = cal.get(Cal endar. YEAR);
return nonth + "/" + day + "/" + year;
}
}
Stock.java
/~k
* Aut hor: Leon Wi
* File name: Stock.java
* Read stock information (open, high, [ow, close, volune)
* from XM. file based on given stockid and date
*

/

import java.io.*;

import java.util.*;

i nport javax.xml .parsers.*;
i nport org.w3c.dom *;

i mport org.xm.sax.*;

public class Stock {

static int day, nonth, year;
String filenane = "";
public Stock(String ID){
filenane = "data/ market/"+l D+".xm";
}

/'l getStockPrice returns the price info for days ago
/1 typel D. 0O=high; 1=low, 2=open; 3=cl ose; 4=vol une
public doubl e get StockPrice(int typel D, double days){

-57-

String
String
String
String
String
String
doubl e

dat eVval ue
openVal ue "

hi ghVal ue ;
| owalue = "";

cl oseVal ue = ;
vol umreVval ue '
r et ur nval ue

if (typelD<O || typel D>=5) return -1;

String

try {

theDate = get Date((int)days);

Docunent Bui | der Fact ory docBui |l der Factory =
Docunent Bui | der Fact ory. newl nst ance() ;
Docunent Bui | der docBui |l der =
docBui | der Fact ory. newDocunent Bui | der () ;
Docunment doc = docBuil der. parse(new Fil e(filenane));
doc. get Docunent El enent (). nornal i ze() ;

/1l get the root of the docunent
El enent root = doc. get Docunent El enment () ;

NodeLi st |istOf Records = doc. get El enent sByTagNanme(" Record");
for(int s=0; s<listORecords.getlLength() ; s++){

Node firstRecordNode = |istCOf Records.item(s);

i f(firstRecordNode. get NodeType() == Node. ELEMENT_NODE) {

El enent firstRecordEl ement = (El enment)firstRecordNode;

NodelLi st dateList =
firstRecordEl erent . get El ement sByTagNane(" Date");
El enent dateEl ement = (El enment)dateList.item(0);
dat eVal ue = dat eEl enent . get Fi rst Chi I d() . get NodeVal ue().trim);

NodelLi st openList =
firstRecor dEI enent . get El ement sByTagNane(" Qpen") ;
El ement openEl enment (El enent) openList.item(0);
openVal ue = openEl errent getFirstChild().get NodeVal ue().trim));

NodelLi st hi ghList =
firstRecordEl erent . get El ement sByTagNane("Hi gh");
El enent hi ghEl ement = (El enent) hi ghLi st.iten(0);
hi ghVal ue = hi ghEl ement . get Fi rst Chi | d() . get NodeVal ue().trim);

NodeLi st | owList = firstRecordEl ement. get El ement sByTagNanme("Low");
El enent | owEl enent = (El enent)lowlist.itenm(0);
| owval ue = | owEl enent . get Fi rst Chi |l d(). get NodeVal ue().trin();

NodelLi st cl oseLi st =
firstRecordEl ement. get El enent sByTagNane("Cl ose");
El ement cl oseEl enent = (El enent)cl oseList.item(0);
cl oseVal ue = cl oseEl enent. get FirstChil d().getNodeVal ue().trim();

NodeLi st vol umeLi st =

firstRecordEl enent. get El enment sByTagName(" Vol une");
El ement vol uneEl ement = (El enent)vol uneList.item0);
vol uneVal ue = vol uneEl ement. get Fi rst Chi |l d(). get NodeVal ue().trin();

if (theDate.equal s(dateValue)) {
switch (typel D) {
case O:
returnVal ue = Doubl e. val ue (hi ghVal ue) ;
br eak;

-58 -

case 1:
returnVal ue = Doubl e. val ue (1 owval ue) ;

br eak;
case 2:
returnVal ue = Doubl e. val ue (openVal ue) ;
br eak;
case 3:
returnVal ue = Doubl e. val ueX (cl oseVal ue) ;
br eak;
case 4:
returnVal ue = Doubl e. val ueX (vol uneVal ue) ;
br eak;
defaul t:
returnVal ue = -1;
br eak;
}
}
}
}
}catch (SAXParseException err) {
Systemout.println ("** Parsing error" + ", line "
+ err.getLineNunmber () + ", uri " + err.getSystemd ());
Systemout.println(" " + err.get Message ());

}catch (SAXException e) {
Exception x = e.get Exception ();
(x == null) ? e: x).printStackTrace ();
}catch (Throwable t) {
t.printStackTrace ();

return returnval ue

/1 get date for prior n days
private String getDate(int days)({
/1 if nunmber of days (ago) is negative, use current date
i f (days<0) days=0

Cal endar cal = new G egorianCal endar () ;
day = cal . get (Cal endar. DAY_OF MONTH) ;
month = cal . get (Cal endar. MONTH) +1
year = cal.get(Cal endar. YEAR);
i f(day-days<=0){

i f (nont h-1<=0) {

year - =1;
nont h=12
day=31;
el se{
nont h- =1,
day=get Last DayOf Mont h(nont h, year) ;
}
el se{
day- =days;
}

return nont h+"/"+day+"/" +year;

/1 get days of last nonth
private int getlLastDayOfMonth(int nmonth, int year){
int nunmbDays = O;
switch (nonth) {
case
case
case
case
case
case
case

PR O~NOTWR

-59 -

nunmbDays = 31,
br eak;
case 4.
case 6:
case 9:
case 11:
nunmbDays = 30;
break;
case 2:
if (isLeap(year))
nunbDays = 29;
el se
nunbDays = 28;
br eak;
defaul t:
nurmbDays = -1,
br eak;

}
return nunbDays;

/1l is |leap year or not
private bool ean isLeap(int year){
bool ean | eap;
if (year %400 == 0){
|l eap = true;

}
else if (year % 100 == 0){
|l eap = fal se;

}
else if (year %4 == 0){
|l eap = true;

el se{
|l eap = fal se;

return | eap;

}
/| average price of a stock for current date
publi ¢ doubl e average(String 1D){
doubl e avg = 0.0;
Stock sk = new Stock(1D);
avg = Math.rint(100.0 *
((sk. get StockPrice(0, 0)+sk. get StockPrice(1,0))/2)) / 100.0;
return avg;
}
}
Portfolio.java
/*

* Aut hor: Leon Wi
* File nanme: Portfolio.java
* Process portfolio
*/
import java.io.*;
import java.util.*;
i nport javax.xmnl.parsers.*;
i mport javax.xm .transform *;
i mport javax.xml .transform dom DOVSour ce;
i nport javax.xm .transform stream StreanResul t;
import org.xm.sax.*;
i mport org.w3c.dom *;

-60 -

public class Portfolio {
String filenane = new String("data/PORTFCLI O xm ") ;

public Portfolio()({
}

/1 new filled order processing
public void newOrder(String orderDate, int type, String stocklD, double amount,
double filledPrice){

doubl e tenmpArmount = 0. 0;
bool ean st ockOmed = fal se;
String datevValue = "";
String idvalue = "";

String amountValue = "";

try

Docunent Bui | der Fact ory docBui |l der Factory =
Docunent Bui | der Fact ory. newl nst ance() ;

Docunent Bui | der docBui | der =

docBui | der Fact ory. newDocunent Bui | der () ;

Docunment doc = docBuil der. parse(new File(filenane));
doc. get Docunent El enmrent () . normal i ze() ;

/1l get the root of the docunent
El enent root = doc. get Docunent El ement () ;

NodeLi st |istOf Records =
doc. get El enent sByTagNanme(" Record");

for(int s=0; s<listOfRecords.getlLength() ; s++){
Node firstRecordNode = |istCOf Records.item(s);

i f(firstRecordNode. get NodeType() ==
Node. ELEMENT_NODE) {

El enent firstRecordEl enent =
(El ement) first Recor dNode;

NodeLi st dateList =
firstRecordEl erent . get El ement sByTagNane(" Date");

El enent dateEl ement = (El ement)dateList.iten(0);
dat eVal ue =
dat eEl ement . get Fi rst Chi | d() . get NodeVal ue().trin();

NodeLi st idList =
firstRecordEl ement . get El ement sByTagNane("1D");

El enent i dEl ement = (El enment)idList.iten{0);
idval ue =
i dEl ement . get Fi rst Chil d() . get NodeVal ue()

Ltrim();

NodelLi st anount Li st =
firstRecordEl ement. get El ement sByTagNane(" Amount ") ;

El ement anount El ement =
(El erent) anpunt Li st.itenm(0);
anmount Val ue =
anount El enent . get Fi rst Chi | d() . get NodeVal ue() .

trinm();
i f (idValue.equal s("CASH")) {
if (type==0){
/'l buy order
t enpAnount =

-61 -

Doubl e. val ue (anount Val ue) -
filledPrice*anount;

} else if (type==1){
/'l sell order
t enpAnount =
Doubl e. val ue (anount Val ue)
+ fill edPrice*anount;

dat eEl ement . get Fi rst Chi | d() . set NodeV
al ue(orderDate);

anount El enent . get Fi rst Chi |l d() . set NodeV
al ue(Doubl e. toStri ng(tenpAnount));

}

i f (idValue.equal s(stocklD)) {
/1 this stocklIDis alreay in the
hol di ngs
stockOmed = true;

if (type==0){
/'l buy order
t enpAmount =
Doubl e. val ueOf (anount Val ue) + anount;
} else if (type==1){
/1 sell order
t enpAnount =
Doubl e. val ueOf (anmount Val ue) - anount;

}

dat eEl ement . get Fi rst Chi | d() . set NodeVal ue
(orderDate);

anount El enent . get Fi rst Chil d() . set NodeV
al ue(Doubl e. toStri ng(tenpAnount));

}
/1 if the stocklDis new, add a new entry to portfolio
if (!stockOmed){

El ement newbDate = doc. createEl ement("Date");
newDat e. appendChi | d(doc. creat eText Node(orderDate));

El enrent new D = doc.createElenent("ID");
newl D. appendChi | d(doc. creat eText Node(stocklD));

El enent newAmpount = doc. creat eEl ement (" Amount”);
if (type==0){

/'l buy order

t enpAnount = anount;
} else if (type==1){

/'l sell order

tenmpAnount = 0 - anount;

newAnount . appendChi | d(doc. cr eat eText Node(
Doubl e. toStri ng(tenpAnount)));

El enent newOrder = doc. createEl enent("Record");
newOr der . appendChi | d(newDate);

newOr der . appendChi | d(doc. cr eat eText Node("\n"));
newOr der . appendChi l d(newi D);

newOr der . appendChi | d(doc. cr eat eText Node("\n"));
newOr der . appendChi | d(newArmount) ;

-62 -

newOr der . appendChi | d(doc. creat eText Node("\n"));

/1 Add the new order to the root

root . appendChi | d(newOr der) ;

root . appendChi | d(doc. cr eat eText Node("\n"));
doc. get Docunent El emrent () . normal i ze() ;

}

/'l Wite out the XM
TransfornerFactory tf = TransformerFactory. new nstance();
Transformer transformer = tf.newlransforner();
DOVBour ce source = new DOVBour ce(doc);
transf ormer. set Qut put Property
(Qut put Keys. ENCODI NG, " UTF-8") ;

transforner. set Qut put Property(Qut put Keys. | NDENT, "yes");
PrintWiter pw = new PrintWiter(new

Fi | eQut put Stream(fil enane));
StreanResult result = new StreanResul t(pw);
transforner.transformsource, result);
pw. cl ose();

} catch(Exception e)
e.printStackTrace();

}
}
publ i ¢ doubl e hol di ngSt ockType() {
try{

Docunent Bui | der Fact ory docBui |l der Factory =

Docunent Bui | der Fact ory. newl nst ance();

Docunent Bui | der docBui | der = docBui | der Fact ory. newDocumnent Bui | der () ;
Docunment doc = docBuil der. parse(new Fil e(fil enane));

doc. get Docunent El emrent () . normal i ze() ;

/'l get the root of the docunent
El enent root = doc. get Docunent El enment () ;

NodeLi st |istOf Records = doc. get El enent sByTagName(" Record");
/1 CASH is not a kind of stock
return |istOf Records. getLength()-1;
}catch(Exception e) {
e.printStackTrace();
return O;

/1 print portfolio holdings

public void holdings() {
String datevValue = "";
String idvalue = "";

nu

String anount Val ue = ;
try

Docunent Bui | der Fact ory docBui | der Factory =
Docunent Bui | der Fact ory. newl nst ance();
Docunent Bui | der docBui | der =

docBui | der Fact ory. newDocunent Bui | der () ;
Docunent doc = docBuil der. parse(new File(fil enane));
doc. get Docunent El enent (). normal i ze();

/1 get the root of the docunent
El enent root = doc. get Docunent El enment () ;

NodeLi st |istOf Records =
doc. get El ement sByTagNane(" Record");

System out. println("Hol di ngs");
Systemout.println("-----------------------------

-63 -

-\n");

}

for(int s=0; s<listORecords.getlLength() ; s++){

Node firstRecordNode = |istOf Records.iten(s);

i f(firstRecordNode. get NodeType() ==
Node. ELEMENT _NODE) {

El enent firstRecordEl enent =
(El'enent) first Recor dNode;

NodeLi st dateList =
firstRecordEl emrent . get El ement sByTagNane(" Date");

El enent dateEl enent = (El enent)dateList.iten{0);
dat eVal ue =
dat eEl ement . get Fi rst Chi | d() . get NodeVal ue() .

trim);

NodeLi st idList =
firstRecordEl enent. get El enent sBy TagNane(

"ID');
El ement idEl ement = (Element)idList.iten{0);
i dval ue =
i dEl ement . get Fi rst Chil d() . get NodeVal ue().tr
in();

NodelLi st anount Li st =
firstRecordEl enent. get El enent sBy TagNane(
" Anmount ") ;
El emrent anount El ement =
(El enent) anount Li st.iten{0);
anount Val ue =
armount El enent . get Fi rst Chi |l d() . get NodeVal ue(

). trin();

/1 Print out hol
System out . print
System out . print
System out. print

ing details

n("Date: "+dateVal ue);
n("Stock ID: "+idVal ue);
n

d
I
I
I n("Anmount: " +anount Val ue) ;

Systemout.printin("-----------------------------

} catch(Exception e)
e.printStackTrace();

/1 total value of portfolio

public double sumn(){
doubl e t enpAnount

= 0.0;

String datevalue = "";

nu

String idvalue = ;
String amountValue = "";

try

Docunent Bui | der Fact ory docBui |l der Factory =

Docunent Bui | der Fact ory. newl nst ance() ;

Docunent Bui | der docBui | der =

docBui | der Fact ory. newDocunent Bui | der () ;

Docunment doc = docBuil der. parse(new Fil e(filenane));
doc. get Docunent El enent (). normal i ze() ;

/1 get the root of the docunent
El enent root = doc. get Documnent El ement () ;

NodeLi st |istOf Records =
doc. get El enent sByTagNane(" Record");

- 64 -

for(int s=0; s<listORecords.getLength() ; s++){
Node firstRecordNode = |istCOf Records.item(s);

i f(firstRecordNode. get NodeType() ==
Node. ELEMENT_NODE) {

El enent firstRecordEl ement =
(El erment) fi r st Recor dNode;

NodelLi st dateList =
firstRecordEl ement. get El ement sByTagNane(" Dat e

)

El ement dat eEl enrent =
(El enent)dateList.item0);
dat eVal ue = dateEl enent.getFirstChild().
get NodeVal ue().trim();

NodeLi st idList =
firstRecordEl ement. get El enent sByTagNane("1D");

El enent i dEl ement = (El ement)idList.iten(0);
i dval ue = i dEl enent. getFirstChild().
get NodeVal ue().trim);

NodelLi st ampuntList = firstRecordEl ement.

get El enent sByTagNanme(" Anount ") ;
El ement anount El enent =

(El enent)amountList.item O
anount Val ue = anount El enent.getFirstChild

get NodeVal ue().trim)

).

—_——

if (idValue.equal s("CASH')) {

t enpAnount +=

Doubl e. val ueO™ (anount Val ue) ;

} else {

Stock sk = new Stock(idVval ue);

t enpAnount +=

Doubl e. val ue (anount Val ue) *sk.

get St ockPrice(3, 0);

}

}

} catch(Exception e) {
e. printStackTrace();

return tenpAnmount;

/1 total value of portfolio
public doubl e surmup(String file){
doubl e tenmpArmount = 0. 0;
String datevValue = "";
String idvalue = "";
String amountValue = "";
try

Docunent Bui | der Fact ory docBui | der Factory =
Docunent Bui | der Fact ory. newl nst ance();
Docunent Bui | der docBui |l der =
docBui | der Fact ory. newDocunent Bui | der () ;
Docunment doc = docBuil der. parse(new File(file));
doc. get Docunent El emrent () . normal i ze() ;

/'l get the root of the docunent
El ement root = doc. get Docunent El ement () ;

NodeLi st |istOf Records =
doc. get El ement sByTagNane(" Record");

-65 -

}

/'l profit
public double pl(){
doubl e tenmpAmount = 0. 0;
String filel = new String("data/ PORTFOLI O BAK. xm ");
String file2 = new String("data/PORTFOLI O. xm ");
sumup(file2) - sumup(filel);
= Math.rint(

}
}
Date.java
/*

t enpAnount
t enpAnount
return tenpAnmount;

for(int s=0; s<listORecords.getLength() ; s++){

Node firstRecordNode = |istCOf Records.item(s);

i f(firstRecordNode. get NodeType() ==
Node. ELEMENT_NCDE) {

El enent firstRecordEl ement =
(El erment) fi r st Recor dNode;

Nodeli st datelList =

firstRecordEl enent. get El enment sByTagNane(" Date");
El enent dateEl ement = (El enment)dateList.iten(0);
dat eVal ue =
dat eEl ement . get Fi rst Chi | d() . get NodeVal ue().trin();

NodeLi st idList =
firstRecordEl enment. get El enent sByTagNane("1D");
El enent i dEl ement = (El erment)idList.iten{0);
i dval ue =
i dEl enment . get Fi rst Chil d(). get NodeVal ue().trim);

NodelLi st anount Li st =
firstRecordEl enent. get El enent sByTagName(" Amount ") ;
El emrent anount El emrent =
(El enent) anount Li st.iten{0);
anount Val ue =
anount El enent . get Fi rst Chi |l d(). get NodeVal ue().

trim);

if (idValue.equal s("CASH"))
t empAnount += Doubl e. val ueOf (anount Val ue) ;

el se {
Stock sk = new Stock(idVval ue);
t empAnount +=
Doubl e. val ueX (anount Val ue) *
sk. get St ockPrice(3, 0);
}

} catch(Exception e) {
e. printStackTrace();

return tenpAnmount;

100.0 * tenpAmount) / 100.0;

-66 -

* Author: Jiahua Ni
* File name: Date.java
*/

import java.io.*;
public class Date{

double date;
int year,month,day;

Date (double inputdate) {
day=(int) inputdate%100;
year= (int) inputdate/10000;
month= (int) (inputdate-year*10000) /100;

if (day>31) {System.out.println("Day invalid");System.exit (0);}
switch (month) {
case 1: {date=day;break;}

case 2: {date=day+31;break;}

case 3: {if (year%4==0)date=day+60;else date=day+59;break;}
case 4:{if (year%4==0)date=day+91;else date=day+90;break;}
case 5:{if (year%$4==0)date=day+121;else date=day+120;break; }
case 6:{if (year%$4==0)date=day+152;else date=day+151;break;}
case 7:{if (year%$4==0)date=day+182;else date=day+182;break; }
case 8:{if (year%$4==0)date=day+213;else date=day+212;break;}
case 9:{if (year%$4==0)date=day+244;else date=day+243;break; }
case 10:{if (year%4==0)date=day+274;else date=day+273;break; }
case 11:{if (year%4==0)date=day+305;else date=day+304;break; }
case 12:{if (year%4==0)date=day+335;else date=day+334;break;}

default: {System.out.println ("Month invalid");System.exit (0);}
}

date=date+ (year-1900) *365+ (year/4-1900/4) ;
}

public double getunigadate () {
return date;

}

public double getnormaldate () {
return (year*10000+month*100+day) ;
}

Scope.java

/*

* Aut hor: Yang Sha, Jiahua Ni
* File nanme: Scope.java

*/

inmport java.util.Hashtable;

i nport java.util.Vector;

public class Scope {

HashSt ack scope=nul | ;
Scope parent_env = null; //for activation records

public Scope(){
scope = nul |

-67-

parent _env= nul | ;

public void enter_scope(){
HashSt ack tenp=scope;
scope=new HashsSt ack();
scope. out er =t enp;

public void | eave_scope(){
i f(scope.get_outer()!=null)
scope. set _p_scope(scope.get _outer().get_p_scope());

}
public void add_or_nodify(String s, double i){
Doubl e t;
HashSt ack tenp=scope;
t =(Doubl e)t enp. get _vari abl e(s);
while(t==null && tenp.outer != null)
{
tenp=t enp. get _outer();
t =(Doubl e) t enp. get _vari abl e(s);
}
if(t==null && tenp.outer == null)
{
t =new Doubl e(i);
scope. add_or_nodify_variable(s, t);
}
t =new Doubl e(i);
tenp. add_or _nodi fy_variabl e(s, t);
}

public void add_in_present_scope(String s, double i){
Doubl e t =new Doubl e(i);

scope. add_or_nodi fy_variabl e(s, t);

public bool ean check_in_present_scope(String s){
i f(scope. get_variable(s)!=null)
return true;
el se
return fal se;

public Doubl e get_variable(String s){
Doubl e t;
t =(Doubl e) scope. get _vari abl e(s);
HashSt ack tenp=scope. get_outer();
while(t==null && tenp != null)
{
t=tenp. get _variabl e(s);
tenp=t enp. get _outer();

return t;

}

cl ass HashSt ack

{
Hasht abl e p_scope=nul | ;

HashSt ack outer=null;

publ i ¢ HashStack(){
p_scope=new Hasht abl e();
outer=nul | ;

}
public void add_or_nodify_variable(String s, Double T){

- 68 -

p_scope. put(s, T);

}

public Doubl e get_variable(String s){
Doubl e t;
t =(Doubl e) p_scope. get(s);
return t;

}

public Hashtabl e get_p_scope(){
return p_scope;

public HashStack get_outer(){
return outer;

}
public void set_p_scope(Hashtabl e h){
p_scope=h;
}
public void set_outer(HashStack h){
out er =h;
}
}
FuncScope.java
/~k

* Aut hor: Yang Sha, Jiahua Ni
* File nanme: FuncScope.java
*/

inmport antlr.collections. AST,;

i mport java.util.*;

i mport antlr.ASTFactory;

public class FuncScope{
String args[];
AST body;
doubl e returnVal ;
String nane;
static Hashtable func = new Hashtabl e();
/1 variableStack is the stack storage for function argunments
static Vector variabl eStack = new Vector();

public FuncScope(String name, AST body, double return_val ue){
t hi s. nane = nane;
t hi s. body=body;
t hi s. returnVal =return_val ue;

public static void registerArgunent(String argument){

vari abl eSt ack. addEl enent (ar gunent) ;

public static void addRet urnVal ue(Doubl e return_val ue){
vari abl eSt ack. addEl enment (r et urn_val ue) ;

public void registerArgunentList(){

args = new String[variabl eStack. si ze()];
for(int i=0;i<variabl eStack.size();i++)

-69 -

vari abl
}
public static
vari abl
}

args[i] = variableStack.elenentAt(i).toString();
eSt ack. renoveAl | El ement s();

voi d set Argunent (doubl e v){
eSt ack. addEl ement (new Doubl e(v));

public voi d checkArgument s(Scope scope){

i f(vari

}

for(int

}

abl eSt ack. si ze()!=args. | ength){

/1l wrong argunents

Systemout. println("Incorrect nunmber of arguments");
System exit(0);

i =0;i<args.length;i++){
// doubl e check the argunents.
/I some_function(double a, ..., double a) is incorrect
i f (scope. check_i n_present_scope(args[i])==true){
Systemout. println("Doubl e use of argunment "+args[i]);
System exit(0);

doubl e val ue =
((Doubl e) vari abl eSt ack. el ement At (i)). doubl eVal ue();
scope. add_i n_present _scope(args[i], value);
/I now we need to clear the vector
vari abl eSt ack. renoveAl | El ement s();

public static void functionDefine(String nanme, AST body, double return_val ue)

t hr ows

ant|r. RecognitionException{
i f(func.get(nane)!=null){

}

Systemout.println("function "+name+" already defined");
Systemexit(1);

FuncScope s = new FuncScope(nane, body, return_val ue);
s.regi sterArgunent Li st();
func. put (nane, s);

}

public static
doubl e
try{

doubl e funcCal |l (Si npWal ker wal ker, String name, Scope scope){
ret_val ue=0. 0;

FuncScope fs = (FuncScope)func. get (nane);

if(fs == null){

System out. println("Function "+nanme+" not defined");
Systemexit(1);

}

fs.checkArgunent s(scope);
wal ker . subprogran(fs. get Body()):;

Doubl e t emp=(Doubl e) vari abl eSt ack. el ement At (0) ;

//get the return val ue

//check if the return value nmatch

i f(fs.returnVal ==0&&t enp! =nul | || fs.returnVal ==1&&t enp==nul |)
{

Systemout.println("Return type of the function "
+nanme +" does not match");
Systemexit(1);

if(temp!=null)

ret _val ue=t enp. doubl eVal ue();
el se

ret _val ue=0. 0;

-70 -

vari abl eSt ack. renoveAl | El ement s() ;

}
cat ch(Exception e){
Systemout.printin("This is an exception");

return ret_val ue;

}

public AST get Body(){
return body;

}
}
GetRealData.java
/ *

* Aut hor: Yang Sha
* File name: CetReal Data.java
*/

i mport java.io.|OException;
inport java.io.*;

i nport java.uti I

i mport java.io.l nput Stream

i mport java.net. Ht pURLConnecti on;

i nport java. net. URL;

i mport java. net.URLEncoder;

i nport java.lang.*;

i nport java.util.Vector;

i mport javax.xml .parsers.*;

import javax.xm .transform*;

i nport javax.xm .transform dom DOMSour ce;
import javax.xm .transform stream StreanResult;
i mport org.w3c.dom *;

public class GetReal Data {
private static String synbol;
private static String query="http://finance.yahoo.com gq?s=";
private StringBuffer priceData,;
private char S|gnal[]—{'L' at, sttty T e, tat, td et)
private char bold[] ={'< ,' b','>"};
private int mark=0
doubl e price;
private static Docurment docunent _in, docunent_out;
private bool ean validating;
private Vector<String> high = new Vector<String>();
private Vector<String> | ow = new Vector<String>();
private Vector<String> open = new Vector<String>();
private Vector<String> close = new Vector<String>();
private Vector<String> volume = new Vector<String>();
private Vector<String> date = new Vector<String>();
private String filenane = "data/market/";

public void setStockData() throws ParserConfigurati onException{
Docunent Bui | der Fact ory fact or y=Docunent Bui | der Fact ory. newl nst ance() ;
Docunent Bui | der bui | der =f act ory. newDocunent Bui | der () ;
docunent _out =bui | der . newDocunent () ;

El enent root =docunent _out. creat eEl enent (" St ock");
docurnent _out . appendChi | d(root);

for(int i=0;i<date.size();i++){
El enent auction = docunent _out. createEl enent ("Record");
root . appendChi | d(aucti on);

El enent aucti onType=docunent _out. creat eEl ement (" Date");

-71-

aucti onType.
appendChi | d(docunent _out . creat eText Node((String)date.elenentAt(i)));
aucti on. appendChi | d(aucti onType);

El enent itenPrice=docunment _out. creat eEl ement (" Open");
itenPrice.

appendChi | d(docunent _out . creat eText Node((String)open.elenentAt(i)));
auct i on. appendChi l d(itenPrice);

El enent item D=docunent _out. creat eEl ement ("Hi gh");
item D

appendChi | d(docunent _out . cr eat eText Node((String) high.elenentAt(i)));
auction. appendChil d(item D);

El enent itenm D4=document _out. creat eEl ement ("Low");
item D4.

appendChi | d(docunent _out . creat eText Node((String) !l ow. el enentAt(i)));
aucti on. appendChi I d(item D4);

El enent item D2=docunent _out. cr eat eEl ement (" Cl ose");
item D2.

appendChi | d(docunent _out . cr eat eText Node((String)close. el ementAt(i)));
aucti on. appendChi |l d(item D2);

El enent item D3=docunent _out. creat eEl enent (" Vol une");
i tem D3.

appendChi | d(docunent _out . creat eText Node((String)vol une. elementAt(i)));
auct i on. appendChi I d(item D3);

/'l save the xm file

try{
TransfornerFactory tf=TransfornerFactory. newl nstance();
Transforner transforner=tf.newlransforner();
DOVBour ce sour ce=new DOVSBour ce(docunent _out);
transf orner. set Qut put Propert y(Qut put Keys. ENCODI NG, " UTF- 8") ;
t ransf or ner. set Qut put Propert y(Qut put Keys. | NDENT, "yes");
PrintWiter pw=new PrintWiter(new Fil eQutputStrean(fil ename));
StreanResult result=new StreanResul t (pw);
transforner.transformsource,result);
pw. cl ose();

cat ch(Transf or mer Excepti on nye){
nmye. printStackTrace();

cat ch(1 OException exp){
exp. print StackTrace();
}

}

publ i ¢ bool ean readStockDat a() {

filename=fil enane+synbol +".xm";

String nmyStr = new String();

try{
Docunent Bui | der Factory factory = Documnent Bui | der Fact ory. newl nst ance() ;
factory. setValidating(validating);
Docunent Bui | der bui |l der = factory. newDocunent Bui | der () ;
docunent _in = buil der. parse(new File(filenane));
El enent node = docunent _i n. get Docunent El enrent () ;
NodeLi st al I Li st = node. get El emrent sByTagName(" Record");
/] start to get the data

for (int i =0; i < allList.getLength(); i++) {
Element list = (Element)allList.iten(i);
NodeLi st tlist = list.getEl enentsByTagName("Date");

if(tlist.getLength()==1){
Elemrent e = (Elenent)tlist.iten(0);
myStr = e.getFirstChild().get NodeVal ue();

date.add((String)nmyStr);

-T2 -

NodeLi st plist = |ist.getEl enentsByTagName(" Qpen");
i f(plist.getLength()==1){

Elemrent e = (Elenent)plist.iten(0);
nmyStr = e.getFirstChild().get t NodeVal ue();
/1 Systemout.println(nyStr);

open. add(nyStr);

NodeLi st clist = list.getEl enentsByTagName("H gh");
if(clist.get Lengt h()==1){

Elemrent e = (Elenent)clis
nmyStr = e.getFirstChild().
/1 Systemout.println(nmyStr
hi gh. add(nmyStr);

t.item(0);

ite
get No Node\Val ue();
)

NodeLi st listl = |ist.getEl enentsByTagNane("Low");
if(listl. getLength()==1){
Element e = (Elenent)listl.item(0);
myStr = e.getFirstChild().getNodeVal ue();
[1Systemout.println(nmyStr);
| ow. add(nmyStr);

NodeLi st list2 = |ist.getEl enent sByTagName("Cl ose");
if(list2. getLength()==1){
Element e = (Elenent)list2.item(0);
myStr = e.getFirstChild().getNodeVal ue();
/1 Systemout.println(nyStr);
cl ose. add(myStr);

}

NodeLi st list3 = |ist.getEl enent sByTagNanme(" Vol une");
if(list3.getLength()==1){
Element e = (Elenment)list3.item(0);
myStr = e.getFirstChild().getNodeVal ue();
/1 Systemout.println(nyStr);
vol une. add(nyStr);

}cat ch(Exception exp){
exp. printStackTrace();

return false; }

return true;

}

publ i c doubl e displayltens(String s) throws | OCException {
synbol =s;

URL url = new URL(query+synbol);

priceData = new StringBuffer();

Ht t pURLConnecti on httpConnection = (Htt pURLConnection)url.openConnection();
I nput Stream i nput St ream = httpConnecti on. getl nput Strean();

int ch;

bool ean fi ni shed=f al se;

bool ean fl ag=f al se;

while (!finished & ((ch=inputStreamread()) > 0)) {

i f(ch==signal [mark])
mar K++;
el se
mar k=0;
i f(mark==10){
mar k=0;
//Systemout.print((char)ch);

-73 -

while (!finished&&((ch=inputStreamread()) > 0)){

if(flag){
// now start to fetch the stock data

if((char)ch=="<" | (char)ch==""){
/] stop to get the data
fini shed=true;
fl ag=fal se;

el se{
if(ch==".")
priceDat a. append('.");
el se
pri ceDat a. append(ch-'0");
}

}

i f (ch==bol d[mark])
mar kK++;

el se
mar k=0;

i f(mark==3){
mar k=0;

flag=true;

}

pri ce=Doubl e. val ueO (pricebData.toString().trim));
/1 output the price of retrieved fromthe docunent

try{
readSt ockDat a() ;

/'l change the price

/1 if price for current date is mssing, create a new record

int year = Cal endar. getlnstance(). get(Cal endar. YEAR);

int month = Cal endar. getlnstance(). get (Cal endar. MONTH) +1;

int day = Cal endar. getlnstance().get(Cal endar. DAY_OF_MONTH) ;

String currentDate = I nteger.toString(nonth)

+'/"+Integer.toString(day)+"/"+Integer.toString(year);

i f(date.size()>0 && currentDate. equal s(date. | astEl enent())){
/1l update the record

hi gh. set El enent At (new String(Doubl e.toString(price+0.5)), high.size()-

| ow. set El enent At (Doubl e.toString(price-0.5), |owsize()-1);
open. set El enent At (Doubl e.toString(price-1), open.size()-1);
cl ose. set El ement At (Doubl e.toString(price), close.size()-1);
vol une. set El ement At (I nteger.toString(19820415), volune.size()-1);

el se{
/'l create a new record
date. add(current Date);
hi gh. add(new String(Doubl e.toString(price+0.5)));
| ow. add(Doubl e. toString(price-0.5));
open. add(Doubl e. toString(price-1));
cl ose. add(Doubl e. toString(price));
vol une. add(I nteger.toString(19820415));

}

set St ockDat a() ;
}cat ch(Exception ex){}
return price;

public static void main(String[] args) throws | OException {
if(null==args | args. Iengt h<1)
Systemout.println("give me a synbol");
Get Real Dat a st ock=new Cet Real Dat a() ;

- 74 -

stock. di splayltens(args[0].toString().trim());

ActivationRecord.java

/*
* Author: Yang Sha, Jiahua Ni
* File name: ActivationRecord.java
*/
public class ActivationRecord
{
public ActivationRecord() {
}

public static Scope create (Scope caller) {
Scope new scope = new Scope();

new scope.parent env = caller;

return new scope;

}

public static Scope remove (Scope present) {
Scope temp = present.parent env;

present = null; -

return temp;

}

CommonASTWithLine.java

/*
* Aut hor: Jiahua N
* File nanme: CommoDnASTW t hLi nes. java
*/

i mport antlr. ComonAST;

i mport antlr. Token;

public class CommonASTW t hLi nes ext ends CommonAST {

private int line = O;
private int colum = 0;
private static final |ong serial VersionU D=1;

public void initialize(Token tok) {
super.initialize(tok);
i ne=t ok. get Line();
col um=t ok. get Col um() ;

}
public int getLine() { return line; }

public int getColum() { return colum; }

-75-

ErrorException.java

/*
* Author: Leon Wu
* File name: ErrorException.java
* Handle error exception
*/
import java.text.*;
import java.util.*;
import java.util.Date;
import java.io.*;

public class ErrorException {

public ErrorException() {

}

// print error message
public String error () {

String errormsg = "Error happened.\n";
return errormsg;

The programs followed are test cases. There are totally 36 test cases listed, 30 of which
are for unit test, and the remaining 6 are regression test cases.

and.uniga
/*
*Author: Yu Song
*unit test case for the operator &
*/
main ()
{
double a=1, b=0;
if a&b then{
return O;
}
else{
return 1;

}

assign.uniga
/ *

-76-

*Author: Yu Song
*unit test case for operator =
*/
main ()
{

double a=1;

if a==1 then{

return 1;
} else { return 0; }

average.uniga
/*
*Author: Yang Sha
*unit test case for built in function average()
*/
main () {
double r;
r=average ("MSFT") ;
println "the average of stock prices in history";
println r;

builtinfunc.uniga
/ *
*Author: Jian Pan
*unit test case for built in function open, close, high, low, and volume
*/
main () {
double price;
if high "MSFT" {2} > 3 then {
print "high the msft price is larger than 3";
print "The Open, Close, High, Low, Volume 2 days ago are:";
print open "MSFEFT" {2};
print close "MSFT" {2};
print high "MSFT" {2};
print low "MSFT" ({2};
print volume "MSFT" {2};
}

for (price=open "MSFT" {2};price>9;price=price-1) {
print "Bought MSFT with 1000 shares at";
print price;

}

buy.uniga

/*

*Author: Jian Pan

*unit test case for built in function buy
*/

main ()

-77 -

buy "MSFT" 1000 0 28.5;

date.uniga
/ *
*Author: Jian Pan
*unit test case for date transformation
*/
main () {
double dl=date[200704047];
double d2=date[20070330];
print "The number of days between are:";
println dl1-d2;

division.uniga
/ *
*Author: Yu Song
*unit test case for operator /
*/
main ()
{
double a=6, b=3;
if a/b==2 then{
return 1;
} else { return 0; }

double.uniga

/*

*Author: Yu Song

*unit test case for data type double

*/

main ()
{
double a=2.435;
if a==2.435 then{
return 1;
} else {
return 0;

}

dudefine.uniga

/ *

*Author: Yu Song

*unit test case for variable scope checking

-78 -

*/
main () {
double a;
double a=date[20070405];

equal.uniga
/ *
*Author: Yu Song
*unit test case for operator ==
*/
main ()
{

double a=2, b=2;

if a==b then{

return 1;
} else { return 0; }

for.uniga
/ *
*Author: Jian Pan

*unit test case for keyword “for”

*/

main ()
{
double a=0;
double 1i;
for (1i=0;1i<5;1i=i+1) {
a=a+i;
println a;
a=a;
}
if a==10 then({
return 1;
} else {
return 0;

}

while.uniga
/ *
*Author: Yu Song

*unit test case for keyword “while”

*/

main ()
{
double a,i=0;
while (i<5) {
double t=0;

-79 -

a=a+ti;
i=1i+1;
println 1i;

}

println t;

if a==10 then{
return 1;

} else {
return 0O;

}

functions.uniga

/*

*Author: Yang Sha

*unit test case for user defined function

*/

double getMSFTPrice () {
double r = market “MSFT”;
return r;

}

void printPrice (double r) {
println "in print price. The price is ";
println r;
return;

}

main ()

{
double r;
r= getMSFTPrice();
printPrice(r);

}

greater.uniga

/*

*Author: Yu Song

*unit test case for operator >

*/

main ()
{
double a=2, b=1;
if a>b then{
return 1;
} else { return 0; }

holding.uniga
/ *

*Author: Jian Pan

-80 -

*unit test case for built in function “holdings”

*/

main () {
double amt=holdingStockType () ;
println amt;
holdings;

if.uniga
/*
*Author: Yu Song
*unit test case for keyword “if”
*/
main ()
{
if 1>0 then {
return 1;
} else {
return O;

}

less.uniga

/*

*Author: Yu Song

*unit test case for operator “<”

*/

main ()
{
double a=0, b=1;
if a<b then{
return 1;
} else { return 0; }

market.uniga
/ *
*Author: Jian Pan
*unit test case for built in function “market”
*/
main () {
print "the market price for Microsoft is $";
double r=market "MSFT";
println r;

}

-81 -

minus.uniga

/ *

*Author: Yu Song

*unit test case for operator “-%

*/

main ()
{
double a=3, b=1;
if a-b==2 then({
return 1;
} else { return 0; }

multiply.uniga

/ *

*Author: Yu Song

*unit test case for operator “x%

*/

main ()
{
double a=2, b=3;
if a*b==6 then({
return 1;
} else { return 0; }

or.uniga

/*

*Author: Yu Song

*unit test case for operator “|“

*/

main ()
{
double a=1, b=0;
if alb then{
return 1;
} else { return 0; }

pl.uniga

/ *

*Author: Jian Pan
*/

main () {
double r;

*unit test case for built in function “pl”

-82 -

r=pl();
println r;

plus.uniga

/%

*Author: Jian Pan

*unit test case for operator “+”

*/

main ()
{
double a=1, b=0;
if atb==1 then{
print "1";
} else { print "0"; }

portfolioSum.uniga

/ *

*Author: Jian Pan

*unit test case for built in function sum()

*/

main () {
double r;
r=sum() ;

println "the sum of portfolios";
println r;

recursion.uniga

/ *

*Author: Jian Pan

*unit test case for function recursion

*/

double recurse (double r) {
if r<0 then return 0;
print r;
return recurse(r-1);

}

main () {
recurse (10) ;

}

-83 -

reserved.uniga

/*

*Author: Yang Sha

*unit test case for scopes. The reserved keywords cannot be redefined by users.

*/

void pl () {
println "in pl";
return;

void average () {
println "in average";
return;

void sum() {
println "in sum";
return;

}

main () {
println ("When user redefines the reserved keywords, an error should be
popped up") ;
average () ;
plQ);
sum() ;

return.uniga

/ *

*Author: Yu Song

*unit test case return statement.

*/

double testReturn (double i) {
return 1i+1;
}
main ()
{
double i=0;
if testReturn(i)-i>0 then print "correct return";
else print "incorrect return";

scope_1l.uniga

/*

*Author: Jian Pan

*unit test case for scopes. Variables cannot be defined twice.

*/
main () {

double a;
double a=0;

-84 -

scope_2.uniga

/*

*Author: Jian Pan

*unit test case for scopes. Variables should be defined before assignment.

*/

main () {
double a=0;
b=high "MSFT" {3};

sell.uniga

/*

*Author: Yu Song

*unit test case for built in function “sell”

*/

main ()

{
println "sell 1000 shares Microsoft without setting stop and limit prices";
sell "MSFT" 1000 0 O;
println "sell 500 shares Microsoft with stop price 28.5 and limit price 28.8";
sell "MSEFT" 500 28.5 28.8;

}

forinwhile.uniga

/*

*Author: jian pan
*regression test case for keyword “while” and built in function “buy”

*/

main ()

{
double j,1i=0;

while (1i<5) {
for (3=0;3<5;3=3+1)
{if j*2==0 then
{println "intialize: j=0";}
else
{println j;}
}
i=i+1;

}

forandbuy.uniga
/ *

-85 -

*Author: Yang Sha
*regression test case for keyword “for” and built in function “buy”

*/

main ()
{ double stopprice=0, limitprice=40;
double 1i;

for (1i=0;1i<16;1i=1i+5) {
stopprice=stopprice+i;
buy "MSEFT" 1000 stopprice limitprice;
}

whileandopen.uniga

/*

*Author: Yu Song

*regression test case for keyword “while” and built in function “open”

*/

main () {
double price=open "MSFT" {2};
while (price >9) {
print "Bought MSFT with 1000 shares at ";
print price;
price = price-1;

}

whileandsell.uniga

/*

*Author: Yu Song

*regression test case for keyword “while” and built in function “sell”

*/

main ()
{ double stopprice=30,limitprice=50;
while(limitprice>stopprice) {
sell "INTC" 500 stopprice limitprice;
limitprice=limitprice-5;

}

portfolio.uniga

/ *

*Author: Yang Sha

*regression test case for buy, sell, sum(), and pl().

*/

main ()

{
double s;
s = sum();

- 86 -

print "Sum of portfolio: ";
print s;
println " ";

buy "MSFT" 500 10.00 0;
buy "MSFT" 500 28.50 0;
sell "INTC"™ 500 0 O;
buy "HPQ"™ 500 0 O;

s = sum();

print "Sum of portfolio: ";
print s;

println " ";

double r;

r=plQO;

print "Profit and loss: ";

print r;

println "™ ";

println "------———————m ";

Strategy 1.uniga
/ *

*Author: Jiahua Ni

*Regression test case. Implement an equity trading strategy.
*/
main ()
{ double s;
s = sum();
print "Sum of portfolio: ";
print s;
println "------—-——-——————————— ";

double five high;
five high=high "MSFT" {5} + high "MSFT" {4} +

high "MSFT" {3} + high "MSFT" {2} + high "MSFT" {1};
five high=five high/5;

double five low;
fiveilow=low "MSEFT" {5} + low "MSFT" {4} +

low "MSFT" {3} + low "MSFT" {2} + low "MSFT" {1};
five low=five low/5;

double five average;
five average=five high+five low;
five average=five average/2;

double tenfive high=high "MSFT" {10} + high "MSFT" {9} +

high "MSFT" {8} + high "MSFT" {7} + high "MSFT" {6};
tenfive high=tenfive high/5;
double tenfive low=low "MSFT" {10} + low "MSFT" {9} +

low "MSFT" {8} + low "MSFET" {7} + low "MSFT" {6};
tenfive low=tenfive low/5;
double ten average=tenfive high+tenfive low;

-87-

ten average=ten average/10;
ten average=ten average+five average;
ten average=ten average/2;

double current price=market "MSFT";
double limit,stop;
double buyshare=0, sellshare=0;

while (current price > five average & buyshare < 1900) {
if open "MSFT" {0}>five average then {
limit= open "MSFT" {0};
buy "MSFT" 500 five low limit;

}
else {
stop=open "MSFET" {0};
buy "MSFT" 500 stop five high;
}
buyshare=buyshare+500;

current price=market "MSFT";

if current price < five average then ({
if current price < ten average then ({
sell "MSFT" 1000 current price five high;
}
else {
sell "MSFT" 500 ten average five high;
1
}

double delta average,delta;

if open "MSFT" {0} - close "MSFT" {1} > 0 then{
delta=open "MSFT" {0} - close "MSFT" {1};

}

else {
delta=close "MSFT" {1} - open "MSFT" {0};

}

if ten average > five average then {
delta average=ten average-five average;
stop=open "MSFT" {0} - delta average;
limit= market "MSFT" + delta;
sell "MSFT" 1000 stop limit;

}

else {
delta average=five average-ten average;
stop=open "MSFT" {0} - delta;
limit= market "MSFT" + delta average;
buy "MSFT" 1000 stop limit;

s = sum();

print "Sum of portfolio: ";
print s;

println " ";

double r;
r =plQ);

- 88 -

print "Profit and loss: ";
print r;
println " ";

-89 -

The programs followed are XML files (storing user transaction records, current
portfolio holdings, and historical stock prices). They are inside the folder /data

ORDERS.xml

/ *

*Author: Leon Wu

*Stores the historical transaction records
*/

<?xml version="1.0" encoding="UTF-8"?>
<Orders>

<Record>
<Date>4/16/2007</Date>
<Type>buy</Type>
<ID>MSFT</ID>
<Amount>500</Amount>
<Stop>0</Stop>
<Limit>0</Limit>
<FilledStatus>1</FilledStatus>
<FilledPrice>28.48</FilledPrice>

</Record>

<Record>
<Date>4/16/2007</Date>
<Type>sell</Type>
<ID>INTC</ID>
<Amount>500</Amount>
<Stop>0</Stop>
<Limit>0</Limit>
<FilledStatus>1</FilledStatus>
<FilledPrice>20.56</FilledPrice>

</Record>

<Record>
<Date>4/17/2007</Date>
<Type>buy</Type>
<ID>MSFT</ID>
<Amount>500.0</Amount>
<Stop>10.0</Stop>
<Limit>0.0</Limit>
<FilledStatus>0</FilledStatus>
<FilledPrice>0.0</FilledPrice>

</Record>

</Orders>

PORTFOLIO.xml

/ *

*Author: Leon Wu

*Stores portfolio holdings
*/

<?xml version="1.0" encoding="UTF-872>
<{Portfolio>
{Record>
{Date>5/7/2007</Date>
<ID>CASH</ID>
<{Amount>—198425. 0</Amount>

- 90 -

<{/Record>

{Record>
<Date>5/7/2007</Date>
<ID>MSFT</ID>
<Amount>22500. 0</Amount>

<{/Record>

<{Record>
<Date>5/7/2007</Date>
<ID>INTCL/ID>
<Amount>-17500. 0</Amount>

<{/Record>

{Record>
<Date>5/7/2007</Date>
<ID>HPQ</ID>
<Amount>19500. 0</Amount>

</Record>

{Record>
<Date>5/7/2007</Date>
<ID>ORCL</ID>
<Amount>1000. 0</Amount>

</Record>

{/Portfolio>

MSFT.xml

/ *

*Author: Yang Sha

*Stores historical stock data for Microsoft (symbol ID “MSFT”)
*/

<?xml version="1.0" encoding="UTF-8"?>
{Stock>

{Record>
<Date>4/19/2007</Date>
<Open>28. 60</0pen>
<High>28. 75</High>
<Low>28. 21</Low>
{Close>28. 73</Close>
<Volume>30740100</Volume>

{/Record>

<{Record>
<Date>4/20/2007</Date>
<Open>29. 60</0pen>
High>27. 75</High>
<Low>26. 21</Low>
{Close>28. 73</Close>
<Volume>30740100</Volume>

<{/Record>

{Record>
<Date>4/21/2007</Date>
<Open>26. 60</0pen>
<High>27. 75</High>
<Low>26. 21</Low>

-91 -

{Close>28. 73</Close>
<Volume>30740100</Volume>

<{/Record>

{Record>
<Date>4/22/2007</Date>
<Open>28. 60</0pen>
<{High>28. 75</High>
<Low>28. 21</Low>
{Close»>28. 73</Close>
<Volume>30740100</Volume>

<{/Record>

{Record>
<Date>4/23/2007</Date>
<Open>28. 60</0pen>
<{High>28. 75</High>
<Low>28. 21</Low>
{Close>28. 73</Close>
<Volume>3014320</Volume>

</Record>

{Record>
{Date>4/24/2007</Date>
<Open>28. 50</0pen>
<{High>29. 75</High>
<Low>27. 21</Low>
{Close>28. 63</Close>
<Volume>30553430</Volume>

</Record>

{Record>
{Date>4/25/2007</Date>
<Open>27. 60</0pen>
<{High>28. 75</High>
<Low>28. 21</Low>
{Close>28. 73</Close>
<Volume>3655543</Volume>

</Record>

{Record>
{Date>4/26/2007</Date>
<Open>28. 12</0pen>
<High>29. 62</High>
<Low>28. 62</Low>
{Close>29. 12</Close>
<Volume>19811221</Volume>

</Record>

{Record>
<Date>5/2/2007</Date>
<Open>29. 61</0pen>
<{High>31. 11</High>
<Low>30. 11</Low>
{Close>30. 61</Close>
<Volume>55041445</Volume>

</Record>

{Record>
{Date>5/3/2007</Date>
<Open>29. 61</0pen>
<High>31. 11</High>

_92-

<Low>30. 11</Low>
{Close>30. 61</Close>
<Volume>48234235</Volume>

<{/Record>

{Record>
<Date>5/4/2007</Date>
<Open>29. 56</0pen>
<High>31. 06</High>
<Low>30. 06</Low>
{Close>30. 56</Close>
<Volume>347703415</Volume>

{/Record>

{Record>
<Date>5/6/2007</Date>
<Open>29. 56</0pen>
<High>31. 06</High>
<Low>30. 06</Low>
{Close>30. 56</Close>
<Volume>25223415</Volume>

<{/Record>

{Record>
<Date>5/7/2007</Date>
<Open>29. 61</0pen>
<{High>31. 11</High>
<Low>30. 11</Low>
{Close>30. 61</Close>
<Volume>3631215</Volume>

<{/Record>

{/Stock>

-03 -

