SIGL
A Drawing Language

B S
Phong Pham

Abelardo Gutierrez
Alketa Aliaj

May 7, 2007

COMS W4115 Programming Languages and Translators - Spring 2007



Outline

e Introduction

— What is SIGL?
— Feature highlighting

e SIGL anatomy

— Scanning and parsing
— Overall design
— Evaluation

o [esting

COMS W4115 Programming Languages and Translators - Spring 2007




What is SIGL?

e Simple Image Generation Language: simple language for drawing
2D images
e Motivation

— VRML language: standard 3D model specification
— Lack of controlling flow

— Repetition required

— Only suitable for machine generation

e Introduce more control in form of C-like syntax

COMS W4115 Programming Languages and Translators - Spring 2007 2




Drawing in SIGL

e Draw 3 vertically aligned boxes

for (i = 0;1 < 3;++1)
{
:translate(0, i *x 2): {
rectangle(0, 0, 1, 1);

COMS W4115 Programming Languages and Translators - Spring 2007




Features

e Drawing features

— OpenGL-like drawing mechanism
— Support commonly used primitives: lines, circle, ellipse, polygons
— Transformations: translation, rotation, scale

e Language features

— C-like language

— Support nearly all C constructions (except for switch)
— Data types: int, double, boolean, associative array

— Dynamic type system, no type decoration

— Static scoping

— Applicative evaluation order

COMS W4115 Programming Languages and Translators - Spring 2007 4




Grammar

e C-like operators / comments / ID

— Three types of operational tokens: Integer, real number, logical

o C-like arithmetic precedent etc.

— Mult, Div, and Mod precedence over addition and subtraction

e C-like function declaration and flow control statements

— for, if, while, break, continue, return, empty statement (;)

COMS W4115 Programming Languages and Translators - Spring 2007




Parser - Walker

e Build AST tree in 2 steps

— Build default ANTLR tree (Parser)
while_stmt : "while"”™ LPAREN! expr RPAREN! stmt ;

— Transform default AST tree into object tree (Walker)
#("while" el=expr sl=stmt { s = new While(el, sl1); } )

e Store location of the expressions for debugging purposes.

#(LOR a=expr b=expr { e = new LogicalOperation("||", a, b);
e.setLine(#LOR.getLine()); e.setColumn(#LOR.getColumn()); } )

e The object tree makes Walker simpler, allows language flexibility

COMS W4115 Programming Languages and Translators - Spring 2007



Class Hierarchy

| f
BoolConstant

For
|ntConstant
While
Stmt Exor Real Constant RelationalOneration
Block
BinarvOperation ArithmeticOperation
Break
UnarvOperation LoaicalOperation
Continue
Return
Function Value

IntValue RealVValue ArravValue BoolValue FunctionValue ThunkValue

COMS W4115 Programming Languages and Translators - Spring 2007




Type checking
e Expressions are evaluated into Values
e [ype-checking is done using Values

e Example: “%" operator

— Evaluate left hand side to vall
— Evaluate right hand side to val2
— Check that both vall and val2 are both of type IntValue

COMS W4115 Programming Languages and Translators - Spring 2007




Environment
e Stored current states of the program

e Components:

— Symbol table

— Drawing canvas (this includes colors, etc.)
— Current transformation

— Break, continue, return flag

COMS W4115 Programming Languages and Translators - Spring 2007




Symbol table

e Desired behavior

x =1; // x is bound to 1
{

x = 5; // x is bound to 5

y = 6; // x is bound to 5, y is bound to 6
+

// x is bound to 5, y is unbound

name — stub (| value name | = stub || value name | = stub | = value
' name !’ \ value \ sub L= value !
Clone Extend Extend destructively

COMS W4115 Programming Languages and Translators - Spring 2007

10



Functions

e Functions are first-order entities in SIGL

— Can be passed as arguments to other functions
e Function declarations are evaluated into FunctionValues

e FunctionValue: tuple of 2 values fv = (f,env)

— The function f itself
— A cloned environment env of the environment at which the
function iIs declared

e Handle recursive function: bind destructively f to fv in env

COMS W4115 Programming Languages and Translators - Spring 2007 11




Function call evaluation
e Retrieve FunctionValue associated with the given name

e Execute the function (stored in FunctionValue)
— Static scoping: using the environment stored in FunctionValue
— Dynamic scoping: using the current environment

e Evaluation order

— Applicative order: evaluate each argument expressions and pass
to the function

— Normal order: create a ThunkValue
*x ThunkValue: tuple (expr,env)

COMS W4115 Programming Languages and Translators - Spring 2007 12




Modified access in symbol table
e ThunkValue should only be evaluated once

e Access iIs called:

— Get the value

— If the value is ThunkValue
x Evaluate expr in ThunkValue using env in ThunkValue
*x Replace ThunkValue in symbol table with new value

— return value

COMS W4115 Programming Languages and Translators - Spring 2007

13



Built-in functions
e Don't need to change lexer/parser
e Implement as FunctionValue

e Automatically loaded

COMS W4115 Programming Languages and Translators - Spring 2007

14



Testing
e Some unit testing using JUnit
e Peer-review

e Big-bang testing

COMS W4115 Programming Languages and Translators - Spring 2007

15



Thank you

Questions?

COMS W4115 Programming Languages and Translators - Spring 2007

16



