

Project Proposal

Dynamic Data Represent Language (DDRL)

Columbia University

COMS W4115 Programming Languages and Translators

Spring 2007
Prof. Stephen Edwards

Team Members:

Alex Ling Lee al2537@columbia.edu
Yan Zhang yz2197@columbia.edu

Yitao Wang yw2226@columbia.edu
Zhiyang Cao zc2109@columbia.edu

Part I

Overview:

The objective of our project is to develop a simple but efficient and powerful language for
data representation, which can be used to display, manipulation and analysis the data in
3D graphical objects.

Our language can be easily mastered by the beginners who don’t have much experience
in 3D graphics programming, as well as powerful flexibilities for advanced user to create
complex and sophisticate data presentation.

The programmer of our language not only can create different 3D models to represent raw
data separately or in combination, but also define the data control and animation
sequence to facilitate the presentation.

Introduction:

The Dynamic Data Representation Language is based on OpenGL graphics library. It is
used to create the specific 3D graphics models according to original raw data, and control
the model and define the sequence of animation.

The language designed to be similar to nature English language, so that is easy to use.
The compiler provide the library to render 3D model, graphics effects and animation, the
programmer only need to organize the model and control the sequence. The
programmers don’t have to take care of complicate 3D graphics programming.

The language provides a large flexibility to programmer, who can use it to create complex
model and explicit scenario animation.

The programming consists of two parts.
First the programmer defines and creates the models based on raw data. The language
has a few of primitive graphics model data type “PIE, COLUMN, LINE, AREA, RADAR”.
All these data type has some of properties. Programmers can create the simple model
using the raw data, they also can create the combination models by organize the simple
models.
Second, Programmers control the model, change their properties and define the display
and animation sequence to generate clear and vivid dynamic data presentation.

Following is some basic feature of our Language.
The language can generate dynamic, visible report, easily and efficiently.

 Provide a better way to process formed data
 Various graphics models to represent data;
 Support model combination and hierarchy.
 Generate dynamic and interactive chart
 Merging of charts, which allows the new charts to be created using existing charts as

components;
 Select and highlight the model, regroup the models.
 The concept "macro" can be used here to record datasets and their activities of

generated components on the chart;
 A "console" mode will be supported. This allows user to interactive with chart

components and facilitates debugging.

Part II Language Features

Basic Data Types

"INT", "FLOAT" and "STRING" are primary types to store data.
"DATASET" is used to read in data from formatted files.
"PIE","LINE", "COLUMN", "AREA" are built-in chart 3D objects. By creating instances for
these chart objects, the models that are going to be drawn will be pre-defined. User can
invoke the functions and use attributes of the objects.
“ARRAY” will be supported to store and manipulated large amount of data of the in array.

Key Words

Type I: Module Construction.

MODEL
ENDMODEL
ADD ... INTO
REMOVE … FROM
POSITION
ROTATION
SCALE

Type II: Module Manipulation

COMPARE
SPLIT
WAIT
ROTATE
DISPLAY
REMOVE
CLEAR

Arithmetic and Comparative Operators:

Plus:"+"
Subtract:"-"
Multiply:"*"
Divide:"/"
Exponential: "^",for example, x^5
Self-plus:"++"
Self-subtraction:"--" (note, to avoid unnecessary confusion, self-plus and self-subtraction
can only be used separately as a single expression.)
Assignment:"="
Equal:"=="
Large than:">"
Less than:"<"
Not equal:"!="
No less than:">="
No larger than:"<="
Scope Operator:"{","}" and "(",")"
Comment: "##"

Control Statement

"if-else" condition:
IF(/*condition*/)
{
##expression
}
ELSE
{
##expression
}

"for" loop:
FOR 1 TO 10
{
##expression
}

"while" loop:
WHILE (i<=0)
{
##expression
}

"foreach" loop (used to walk through the objects in array):
FOREACH x IN array0
{
##expression
}

Part III Simple Examples

Formatted file (.txt)

form1.txt
w4115 w4118 w4187
A 4.0 3.0 3.3
B 3.6 3.3 3.3
C 3.8 3.3 2.7

form2.txt
w4115 w4118 w4187
Spring 30 40 50
Fall 40 50 40

Sample Code 1: Generate 3 Pie charts and display all them

on the screen.

##Sample Code 1 starts

DATASET myDataSet=DATAREAD("form1.txt");

MODEL M1;

PIE myPie1=myDataSet[1][1].value, myDataSet[2][1].value, myDataSet[3][1];
ENDMODEL M1; ##End of model initialization

DISPLAY M1.myPie1;
##Draw the first pie chart

WAIT;
Sample Code 1 ends

Chart 1

Sample Code 2: Generate 2 Column charts and merge them

into a new one

Sample Code 2 starts

DATASET myDataSet=DATAREAD("form2.txt");
##Read in data from formatted file

MODEL M2

INT row = myDataSet.row; ##get the number of rows in dataset
INT colum = myDataSet.col; ##get the number of columns in dataset
ARRAY COLUMN col[row*colum]; ##an array of COLUMN with row*col items

INT colIndex = 1;
INT rowIndex = 1;
FOR 1 to row
{
 FOR 1 to colum
 {
 col[rowIndex*colum + colIndex] = myDataSet[rowIndex][colIndex].value;
 colIndex++;

}
rowIndex++;

}

ADD myColumn1, myColumn2 INTO myColumn3;
##Merge myColumn1 and myColumn2 into a new chart object : myColumn3

ENDMODEL M2

SPLIT M2.myColumn3;
##Change the display mode to SPLIT

FOREACH COLUMN columnx in col
{

DISPLAY columnx; ##display all the column using loop.
}
##Output to screen

WAIT 30;
Hold the output onto the screen

CLEAR;
Clear screen.
##Sample Code 2 ends

Chart 2

