ScriptEdit Language Reference Manual

Bhavesh Patira
bp2214Q@columbia.edu

Bethany M. Soule
bms2126@columbia.edu

Deni Pejanovic
dp2232Q@columbia.edu

Marc Vinyes
mv2258Qcolumbia.edu

March 5, 2007

1 Introduction

ScriptEdit is a language that allows you to automatically generate text from a
limited set of instructions. You can write new files with this text, or insert it into
an existing file. The instructions may use the text of the edited file, external
files or text generated by other standard input/output based applications as
input. ScriptEdit is similar to a macro processor in the sense that replaces text
with other text, but it can also create new files from one single source.

The main goal of this language is to allow the user to edit files and the script
operations that are needed to create their content all from within one single
source file. Often, editing content text files (HTML, BTEX, XML, etc) is a
process that involves several different steps and programs - like separate bash
scripts, a text editor, and other console programs (e.g. using ImageMagick to
edit images or using Matlab to create graphs that will be linked). ScriptEdit
is a way to put all those different process calls together with the content text
file.

2 Overall idea

A script-edit code is a text file that contains script-edit statements interleaved
with text from another language. We will refer to the latter as string constants
(a more detailed definition is given later). Statements process this text and may
output text in the position where they are written.

3 Main lexical conventions

We have the following kinds of tokens: string constants, keywords, characters
that separate the arguments of a keyword, identifiers, conditions, mathematical
expressions, the declaration operator(#) and the content operator ($). Their
definitions are provided throughout this document.

Whitespace, including tabs and newlines are generally relevant everywhere ex-
cept when indicated otherwise within this manual. For example: leading and
trailing whitespaces are not ignored:

{My String Variable} is not equivalent to {My String Variable} is
not equivalent to { My String Variable }.

3.1 String constants

String constants are all consecutive sets of ascii characters including but not
limited to dashed, numbers and spaces that aren’t keywords, characters that
separate the arguments of a statement, identifiers, conditions, mathematical
expressions, the declaration operator(#) or the content operator ($).

The#, $, (,), {, }characters can be escaped with backslash \ if needed.

3.2 Comments

Since ScriptEdit is intended to be embedded within the text of another file, we
do not provide a ScriptEdit-specific comment. To comment your code use the
native comment style in the string constants.

For example if you are editing an HTML file you would use:

<HTML>
<!-- your comments -->
<HTML>

3.3 Identifiers (Names)

An identifier is a case sensitive sequence of letters, digits, and underscore (_).
The first character cannot be a digit.

3.4 Keywords, declaration and content operators

The following identifiers are keywords that are reserved for specific use as fol-
lows: The # within a line signifies the start of a ScriptEdit command, and
is usually immediately proceeded by a keyword without any space character
seperation.

$file #file #def #if

t#telse #while #exec #calc
#for #next #do #gettoken
#urite #break #continue

The declaration (#) and content operators ($) may be considered a string con-
stant or part of a variable/function declaration depending on rules that are
specified by their semantics.

The lexical conventions of each statement are explained along with its seman-
tics.

3.5 Conditions

Conditions are exclusively used as part of the #if and #while constructs. They
evaluate to either true or false.

Allowable binary operators are:

=, <, >, >=, >=, I=

> B B >

Conditions are composed by pairs of statements seperated by the binary oper-
ator where each statement evaluates to a string value for comparison. Since all
variables are identified by their string value, only strings are compared.

Conditional statements can be compounded using the & or | operators. Paren-
theses can be used to maintain proper associativity within the conditional state-
ment.

For example:

((${var1}=${var2}) & (${var3}=${vard} | ${var3}=${var5}))

3.5.1 Parenthesized expressions

Expressions enclosed in parentheses () have an identical value as an expression
written without parentheses. Parentheses can be nested as long as they are

balanced.

3.5.2 Relational operators

Operators >, >=, <, <= are meant to compare only strings that can be con-
verted to integer values. If strings can’t be converted to an integer, using these
operators can produce undesirable results.

Operator

Use Description

${v1}>${v2} returns true if the integer value of vl is
greater than the integer value of v2

${v1}>=${v2} returns true if the integer value of vl is
greater or equal to the integer value of v2

${v1}<${v2} returns true if the integer value of vl is
less than the integer value of v2

${v1}<=${v2} returns true if the integer value of vl is
less or equal than the integer value of v2

vl=v2 returns true if the string vl is equal to
string v2
vil=v2 returns true if the string vl is NOT equal

to string v2

3.5.3 Conditional operators

Operator
&
I

Use Description

condl & cond2 returns true if condl and cond2 are both true
condl | cond2 returns true if either condl or cond2 are true
lcondl returns true if condition condl is NOT true

3.5.4 Operator precedence

Precedence in evaluation is as follows:

operator
* /

+_

< <= > >=
= 1=

N — &

associativity
left (highest)
left
non-associative
non-associative
left

left

right (lowest)

3.6 Other tokens

Characters that separate the arguments of a keyword are “{”, “}”, “(”, «)”, and
“”. The { } are generally used to denote statement blocks and “(”, “)” gen-
erally encloses statement or function arguments, but variable calls are specified
using the characters { } for different purposes. More details are given for each
particular statement.

Mathematical expressions are specific to statement #calc and are explained
with the function definition.

3.7 Statements

Statements are executed from beginning of file to end and from left to right.
Control-flow structures such as functions are evaluated in place. The basic scrip-
edit statement begins with a keyword, followed sometimes by a variable with
parentheses () and an statement block contained within brackets { }.

4 Semantics

Scoping behavior varies dependent on context as described herein. However, a
general rule is that variables in nested scopes inside the current scope can’t be
modified from outside their nested scope, but variables from outer scopes can
be accessed using the proper statements.

4.1 Variable declaration
Variables may be declared and set to a value using one of these two alterna-
tives:

e #def (name) {body}

A new scope is created and the code contained in “body” is executed and
an output string OUT is produced. At the end this new scope is destroyed.

A variable with “variablename” is created in the current scope and its value
is set to the string OUT. If a variable with same name already exists in
the current scope, an error is generated.

e #(variablename){body}

A new scope is created and the code contained in “body” is executed and
an output string OUT is produced. At the end this new scope is destroyed.

If a variable with same name already exists in the current scope or an outer
scope (any scope where the current scope is nested), its value will be over-
written with the string OUT. Otherwise, a variable with“variablename”
is created in the current scope and its value is set to the string OUT.

Syntax notes: Whitespace including tabs and newlines are allowed between
(variablename) and {body} in both cases. When the character “#” is not fol-
lowed immediately by a “(” it is considered as a string constant.

4.2 Function declaration

Functions are a generalization of a variable and they are declared with a very
smilar syntax. They differ in that functions take arguments whereas variables
do not. Arguments are identifiers of variables or functions.

Functions may be declared and set using one of these two alternatives:
e #def (functionname,argl,arg2,..,argN){body}

A new scope is created and all the code contained in {body} is executed
except parts that depend on the arguments. At the end this new scope is
destroyed. The output string will be generated as soon as the function is
called with arguments that can be resolved. Recursion is allowed so the
same function can call itself during its definition.

A function with functionname and arguments argl,arg?2,...,argN is
created in the current scope and its code is set to the only argument-
dependent code mentioned above. If a function with same name already
exists in the current scope, an error is generated.

e #(functionname){body}

A new scope is created and the code contained in “body” is executed,
however, an output string can’t be created because the arguments can’t
be resolved yet. Everything is executed except parts that depend on the
arguments. At the end this new scope is destroyed. The output string will
be generated as soon as the function is called with arguments that can be
resolved. Recursion is allowed so the same function can call itself during
its definition.

If a function with same name already exists in the current scope or an outer
scope (any scope where the current scope is nested), it will be overwrit-
ten with the only-argument dependent code mentioned above. Otherwise
a function with“functionname” and arguments argl,arg2,...,argN is
created in the current scope with the same content.

Syntax notes: Whitespace including tabs and newlines are allowed between
(functionname) and {bodyl} in both cases. When the character “#” is not
followed by a “(” it is considered as a string constant.

4.3 Variable call

The variable is fetched from the nearest current or outer scope. The constant
string value stored in a variable is inserted to the text output using the following
syntax:

${variablename}

Syntax notes: When the character “$” isn’t followed by a “{” it is considered
as a string constant.

4.4 Function call

In a function call arguments are passed by reference:
${functionname (${argll}...${argh})}

The function is fetched from the nearest current or outer scope. Then a new
scope is created, and the only-argument dependent code will be execute taking
as the argument variables the variables that are specified in the function call.
Then the recently created scope is destroyed. In order to avoid bad programming
practices, variables of the outer scope which aren’t specified as arguments of the
function won’t be accessible by the scope of the function.

Static strings are also accepted as arguments. For each static string a temporal
variable is created and passed by reference to the function. However even if it
may be modified, it won’t be accessible by the programmer. In the following
example two temporal variables are created internally by the compiler with value
“hello” and “world”.

${functionname (hello,world})}

4.5 File include

The following options are available:
o #file{filename}

The contents of the file are inserted inline and executed without creating
a new scope.

e #file{filename,variablename}
or
#file{filename, functionname}

If variablename or functionname are defined in global scope of the file
specified by filename, their definition is inserted inline and executed with-
out creating a new scope if they don’t call any variable or function out of
their scope. If they call a function or variable out of their scope or they
simply don’t exist in the global scope of the file an error is generated.

4.6 File execution

The following options are available:
o $file{filename}

A new scope is created and the content of the file is executed. At the
end the newly created scope is destroyed. Again, in order to avoid bad
programming practices, variables of the outer scope won’t be accessible
inside this scope.

o $file{filename,variablename}
or
$file{filename,functionname (${argumenti’. . .${argumentN})}

If variablename or functionname are defined in the global scope of the
file, a new scope is created, their code is executed, their content goes to
the output and the newly created scope is destroyed as long as they don’t
call any variable or function out of their scope (only arguments passed by
reference to functions are accessible). If they directly call a function or
variable out of their scope or they simply don’t exist in the global scope
of the file an error is generated.

4.7 #if and #else

#if (condition){body}: Evaluates condition if condition evaluates true, it cre-
ates a new scope executes body and then destroys the created scope.

#if (condition)
{body}

If #if (condition){body} is followed by an #else{body2} when condition eval-
uates false, another scope is created, body2 is executed and the scope is de-
stroyed. The else ambiguity produced in nested #if statements is resolved by
connecting #else with the last encountered elseless #if.

Syntax notes: Whitespace including tabs and newlines are allowed between
(condition) and {body} in both cases.

4.8 #while, #continue, #break

#while(condition)
{body?}

During this loop control, a new scope is created. As long as the condition eval-
uates to true, the body is continually executed. The optional #break statement
will terminate the nearest associated #while. Control is passed to the state-
ment following the terminated statement. The optional #continue statement
will jump to the the point where the nearest associated #while starts. Upon
termination, the newly created scope is destroyed.

Syntax notes: Whitespace including tabs and newlines is optionally allowed
between (condition) and {body} but ignored by scriptEdit.

4.9 #for, #next, #do

#for{body1}
#next{body2}
#next{body3}

#next{bodyN}
#do{body}

A new scope is created, then body1l is executed, then body is executed, then
body2 is executed, then again body, then body3 then body... For each state-
ment block specified with #for{body;} and then with #next{body;}, those are
executed followed by the statement block specified by #do{body} .

4.10 F#exec

#exec (command) {stdinput}

Execute the command exactly as given in string command emulating the com-
mand line. The stdinput is fed into the program as would normally be specified
by the < operator. The standard output of the command is added to the output
file of ScriptEdit. The standard error is ignored.

This command allows interoperability between the program and the operating
system. Only a one-line command argument may be inserted here, but an arbi-
trary number of exec commands may be computed sequentially as needed.

Syntax notes: Whitespace including tabs and newlines are allowed between
(command) and {body} in both cases.

4.11 #calc

#calc(mathematical expression)

Attempts to evaluate the arguments of the expression as integers, compute the
result and put it back into a string. Supports basic arithmetic (+, —, %, /).

Variables within the mathematical expression are converted into integer values,
computed, and then returned as a string representing the integer result. If this
conversion is not possible, #calc may return an undesired result.

Example: #(salary){1000}#calc{salary=*2} will output a string “2000”.

Syntax notes: Mathematical expressions consist of exactly two string vari-
ables or constant strings separated by one of the following binary operators

(+,—,%,/).

4.12 #gettoken

The following syntaxes are accepted:
#gettoken{body}

or

#gettoken (DELIMCHARACTERS) {body}

Extracts from body the first token delimited by string containing all DELIM-
CHARACTERS. If DELIMCHARACTERS aren’t specified, whitespaces, tabs,
or newlines act as a delimiter. This is the way to iterate through lists (stored
as ordinary string variables). This token is added to the output of ScriptE-
dit.

4.13 #write

#{write(filename){body}

A new scope is created. Opens a new file filename and writes the output string
generated by the execution of body to it. The newly created scope is destroyed.
If filename already existed, its content is overwritten.

10

5 Examples

Of course, some of us learn best by example.

5.1 HELLOWORLD library

#def (helloworld,la)

{#if (1a=English){Hello world!'}

#if (la=French) {Bonjour monde!}

#if (la=Catalan){Bon dia mn!}

#if (la=Spanish){Hola mundo!}

#if (la=German){Guten Tag, Welt!}
#if (la=Russian){Zdravstvytye, mir!}
#if (la=Japan){Sekai e konnichiwa!}
#if (la=Latin){0Orbis, te saluto!}}

5.2 Create an array repeating a constant value

#def (CreateArray,arraySize,defaultVal)
{#(count) (1) #while(${count}'=${arraySize}) {${defaultVal}t
#(count) {#calc(${count}+1)}}

5.3 Personal website in two languages

#for{

#(1la){es}

#(color) {#FFFFFF}

}

#next{

#(la){en}

#(color) {#FF0000}

}

#doA{

#write(index_${1la}.html){

<html>

<body background="${color}">
$file{header.sehtml}

<table>

<tr>

<td></td>

<td>

#if (${lat=es){Bienvenidos a mi pagina personal}
#if (${lat=en){Welcome to my personal website}

11

</td>
</tr>
</table>

#if (${1la}=es){Fotos:}
#if (${1la}=en){Pictures:}

#(files){#exec(ls *.jpg)}

#while (${files}!=)

{ #(pic){#tgettoken{${files}}}
#exec(convert ${pic} -resize 400x20 -o o${pic})

}

$file{footer.sehtml}
</body>

</html>

}

}

5.4 FKETEX article file from matlab simulations

#exec(matlab -e simulations(12))

% Executes simulations with parameter 12 in matlab

% Those simulations output some pictures and results
% If the user wants to change the matlab code or the
% simulation parameter

% the report will be updated automagically

% Function that inserts a picture using ScriptEdit
% No need to manually convert from eps to pdf every
% time that a new file is created...

#def (insertpicture,pic)
{#texec(epstopdf ${pic}.eps)
\includegraphics[scale=0.33]1{${pic}?}
}

\documentclass [adpaper, 11pt] {report}
\usepackage{graphicx}
\usepackage{subfigure}

\title{A novel algorithm for Y}
\author{X, Columbia University}

12

\makeindex
\begin{document}

\maketitle
\section{Algorithm}

Let x,y be the input data arrays of...
% Description of the algorithm, bla, bla, bla...

\section{Results}

\begin{figure}[h!]

\begin{center}
\subfigure[datal]l{${insertpicture,datall}}
\subfigure[data2]{${insertpicture,data2}}
\end{center}

\caption{Results for datal and data2}
\end{figure}

Error for each database:

#(errors)={$file{error.txt}}
#(databases)={$file{database.txt}}

% let’s suppose that matlab generates an "error.txt"

% file with the error of the algorithm in each database
% specified in file "database.txt"

\begin{center}

% use packages: array
\begin{tabular}{1]1}

DATABASE & ERROR \\
#while(${errors}!=)
{\hline
#gettoken{${errors}} & #gettoken{${databases}} \\
}

\hline

\end{tabular}
\end{center}

\end{document}

13

	Introduction
	Overall idea
	Main lexical conventions
	String constants
	Comments
	Identifiers (Names)
	Keywords, declaration and content operators
	Conditions
	Parenthesized expressions
	Relational operators
	Conditional operators
	Operator precedence

	Other tokens
	Statements

	Semantics
	Variable declaration
	Function declaration
	Variable call
	Function call
	File include
	File execution
	#if and #else
	#while, #continue, #break
	#for, #next, #do
	#exec
	#calc
	#gettoken
	#write

	Examples
	HELLOWORLD library
	Create an array repeating a constant value
	Personal website in two languages
	LaTeX article file from matlab simulations

