

EZGraphs
 A graphs and charts generating language

Language Reference Manual
03/05/07

Team:
Edlira Kumbarce ek2248@columbia.edu
Vincent Dobrev vd2006@columbia.edu

COMS W4115: Programming Languages and Translators
Prof. Stephen A. Edwards

Spring 2007

1. Lexical Conventions

1.1 Comments

Single-line comments begin with the characters “//” and terminate with an end-of-line
marker. Multi-line comments start with the characters “/*” and end with “*/”. Comments
cannot be nested.

1.2 Identifiers

An identifier consists of any sequence of letters, digits, and underscores. Its first character
must be a letter or an underscore. Identifiers are case-sensitive.

1.3 Keywords

Some identifiers have special meaning in the language. They are reserved as keywords and
cannot be used otherwise. The following identifiers are considered keywords:

void
bool
char
int
float
string
true
false
type

include
break
continue
return
if
else
while
do
for

1.4 Booleans

Boolean constants can only have the values true or false.

1.5 Characters

A character constants is 1 or 2 characters enclosed in single quotes “’”. Within a character
constant a single quote must be escaped by a back-slash “\” as do the following characters:

 “\” back-slash itself
 “\b” backspace
 “\r” carriage return
 “\n” line feed
 “\t” horizontal tab

 2

1.6 Integers

Integer constants are represented by any sequence of digits.

1.7 Floats

Floating point constants consist of any one of the following sequences:

 ● An integer, a decimal point “.”
 ● An integer, a decimal point “.”, a fractional part
 ● An integer, a decimal point “.”, an exponent part
 ● An integer, a decimal point “.”, a fractional part, an exponent part
 ● An integer, an exponent part
 ● A decimal point “.”, a fractional part
 ● A decimal point “.”, a fractional part, an exponent part

The exponent part consists of either “e” or “E”, followed by an optionally signed integer.

1.8 Strings

A string constant is any sequence of characters surrounded by double quotes “””. Within a
string constant a double quote must be escaped by a back-slash “\” as do all the characters
that have to be escaped in a character constant except for a single quote “’”.

1.9 Line Terminators

Lines are terminated by either one of “\r\n”, “\r”, or “\n”. These characters are recognized
and then ignored.

1.10 Whitespace

The blank space and tab characters are considered whitespace and serve to separate
tokens. Like comments and line terminators, whitespace is recognized during lexical
analysis and then ignored.

 3

1.11 Operator Tokens

Operators are special symbols that perform specific operations on operands and return a
result. They may be unary or binary and are evaluated based on an order of precedence,
which is indicated in the table that follows, in descending order.

Operator Type Operators
unary + - ! ++ --
multiplicative * /
additive + -
relational < > <= >=
equality == !=
logical AND &&
logical OR ||
assignment = += -= *= /=

1.12 Separator Tokens

The following symbols are used to separate tokens or combinations of tokens:

{ } () [] ; , .

2. Data Types

The following data types are supported in the language:

bool a boolean value (true or false)
char a single character
int a 32-bit integer
float a single-precision floating point
string a sequence of characters

 4

3. Expressions

Expressions are the core components of statements. They are constructed using operators,
identifiers, constants, function calls, and other expressions. Expressions evaluate to some
value in the end by applying operators to constants, function calls, or other expressions
using the operator precedence rules as indicated in the section on operator tokens. An
expression can be of one of the following:

 lvalue
 lvalue ++
 lvalue --
 function-call
 constant
 unary-expression
 multiplicative-expression
 additive-expression
 relational-expression
 logical-expression
 assignment-expression
 (expression)

3.1 Primary Expressions

Primary expressions consist of l-values (identifiers or arrays), increments and decrements of
l-values, function calls, constants, or other expressions enclosed in parentheses.

Function calls are of the form

 identifier (expression-listopt)

where identifier is the name of the function and expression-list is an optional comma-
delimited list of expressions to be passed as arguments to the function that is being called.

Constants can be boolean, character, integer, floating-point, or string constants.

3.2 Unary Expressions

Unary expressions are expressions prefixed by a unary operator. They are of the form

 - expression
 + expression
 ! expression

The unary + operator returns the value of expression unchanged. The unary – operator
returns the negative value of expression. The logical negation operator ! returns false if
expression evaluates to true and it returns true if expression evaluates to false. Unary
expressions associate from right to left.

 5

3.3 Multiplicative Expressions

Multiplicative expressions consist of two expression operands and one of the multiplicative
operators. They can be applied to integers and floats but not to booleans, characters, or
strings. Multiplicative expressions are of the form

 expression * expression
 expression / expression

They group from left to right.

3.4 Additive Expressions

Additive expressions consist of two expression operands and one of the additive operators.
The + operator can be applied to integers, floats, and strings, while the – operator only
applies to integers and floats. Additive expressions are of the form

 expression + expression
 expression - expression

They group from left to right.

3.5 Relational Expressions

Relational expressions consist of two expression operands and one of the relational
operators. They are applicable to integers and floats, and return a boolean value of true if:

== the two operands are equal
!= the two operands are not equal
< the first operand is less than the second operand
> the first operand is greater than the second operand
<= the first operand is less than or equal to the second operand
>= the first operand is greater than or equals to the second operand

3.6 Logical Expressions

Logical expressions are only applicable to boolean values. They contain two expression
operands and either the logical AND operator (&&) or the logical OR operator (||). The AND
operator has higher precedence that the OR operator. The logical expressions associate
from left to right and are of the form

 expression && expression
 expression || expression

 6

3.6 Assignment Expressions

Assignment expressions consist of an l-value as a left operand, one of the assignment
operators, and expression (whose type is the same as that of the l-value) as the right
operand. They group from right to left. Assignment expressions evaluate to the value
contained in the left operand and are of the form

 lvalue = expression
 lvalue += expression
 lvalue -= expression
 lvalue *= expression
 lvalue /= expression

4. Declarations

Declarations have the form

 declaration:
 type-specifier declarator-list ;

 type-specifier:
 void
 bool
 char
 int
 float
 string
 identifier

 declarator-list:
 declarator
 declarator , declarator-list

 declarator:
 identifier
 declarator [constantopt]

 7

5. Statements

Statements are building blocks of a program and are executed in the order they appear in
the program provided control flow statements do not dictate jumping to different locations.

5.1 Conditional Statement

Conditional statements are used to make decisions at various points in a program. They are
of the form

 if (expression) statement
 if (expression) statement else statement

where expression has to evaluate to either true or false. If expression evaluates to true,
the first statement is executed. If it is false, the second statement is executed, if present.
Conditional statements can be nested.

5.2 While Statement

The while statement is of the form

 while (expression) statement

The expression must evaluate to a boolean and statement continues to be executed as long
as expression is true. The test takes place before each execution of the statement.

5.3 Do Statement

The do statement is of the form

 do statement while (expression)

The expression must evaluate to a boolean and statement continues to be executed as long
as expression is true. The test takes place after each execution of the statement.

 8

5.4 For Statement

The for statement is of the form

 for (expression-1opt ; expression-2opt ; expression-3opt) statement

The statement is equivalent to

 expression-1 ;
 while (expression-2) {
 statement
 expression-3 ;
 }

5.5 Break Statement

The statement

 break ;

is used to exit from iterative statements such as while, do, and for.

5.6 Continue Statement

The statement

 continue ;

is used to terminate only the current iteration of iterative statements such as while, do,
and for.

5.7 Return Statement

A function returns to its caller by means of the return statement, which has one of the
forms

 return ;
 return (expression) ;

5.8 Function Call Statement

The function call statement is of the form

 function-call ;

 9

5.9 Compound Statement

A block of zero or more statements enclosed in curly brackets is also a statement.

6. External Definitions

A program consists of a sequence of external definitions which are as follows:

6.1 Include Declarations

The include declaration

 include “filename” ;

results in the replacement of that line by the entire content of the file fielname.

6.2 Type Definitions

Type definitions have the form

 type identifier { declaration-list }

 declaration-list:
 declaration
 declaration declaration-list

6.3 Function Definitions

Function definitions have the form

 type-specifier identifier (argument-listopt) function-body

 argument-list:
 argument
 argument , argument-list

 argument:
 type-specifier identifier

 function-body:
 { statement-listopt }

 statement-list:
 statement
 statement statement-list

 10

6.4 Declarations

Any declaration that appears outside the body of a function.

7. Scope Rules

The notion of static, open scoping will be applied as follows:

Variables defined in a program externally (outside of functions) are global. Their scope
starts at the beginning of the file containing the program and ends at the end of the file.
They are accessible from anywhere in the file, inside functions and nested blocks of
statements.

Each function in the program has its own scope. Variables defined inside a function can be
accessed only within the function’s body. The same rule applies for parameters to
functions.

Blocks of statements enclosed in curly braces also have their own scope and variables
defined inside each block are accessible only within the block.

Variables that have not been initialized are invalid even within their scope area and
attempts to use them will generate “uninitialized variable” errors.

8. Predefined Functions

8.1 Data Acquiring Functions

getData(filename)

Fills an array (globally defined within the calling function) with data from filename.

genData(min, max, nrPts)

Fills an array (globally defined within the calling function) with nrPts elements ranging from
min to max.

 11

8.2 Drawing Functions

drawPoint(x,y)

Draws a point with coordinates (x,y).

drawHLine(y)

Draws a horizontal line with the y-coordinate specified as a parameter.

drawVLine(y)

Draws a vertical line with the x-coordinate specified as a parameter.

drawRectangle(w,h)

Draws a rectangle with width w and height h.

grid()

Draws a grid on the graph area.

plotData()

Draws a standard graph representation of the data contained in an array defined globally in
the calling function.

8.3 Console Output Functions

print(arg)

Prints to console the string representation of the argument passed to it.

scope()

Prints all the variables in the current scope.

 12

