
ASL Language Reference Manual

 ASL is a language that allows users to quickly create a set of scripted actions and lines in
the format of a play’s script, and run the script with a simple representation of actors. As
actions are simplified into simple directional movement, users are able to write short action
algorithms. Images may be used to replace the default representation of actors or props.

1. Lexical Conventions

1.1 Introduction
 Tokens in ASL include actor names, integers, keywords, strings, and events. Whitespace
is used only as a token separator. Actors refers to the broad set of all objects, and actor names
are therefore similar to an identifier without a type. Events refers to a time starting from 00:00
that contains a set of actions to take place at that moment in the script’s run-time.
1.2 Comments
 Comments are supported as all characters between /* and */
1.3 Actor names
 Actor names can only alphabetical, and multiple parts to the name must be connected
by ‘_’, underscore.
1.4 Keywords
 SceneStart
 SceneEnd
 Actor
 Left
 Right
 Up
 Down
 ULeft
 URight
 DLeft
 DRight
 Text
1.5 Strings
 Strings are composed of any character between “ and “.
1.6 Events
 Events begin with a time, “[xx:xx]”, where x is any integer and the maximum run time is
99 hours and 60 minutes. They are then followed by a series of actions, designated by { }
brackets. Every following action is considered part of the last event until a new event time is
parsed.
1.7 Integers
 Integers will be comprised of the digits 0-9. Floating point is not supported.

2. Statements

2.1 Introduction
 Events and Event actions make up the core of ASL scripting. Every action involves an
actor and an action. Actions are functions that are called on the involved actor. Functions
involve the calling of the 8 directional and text keywords.
2.2 Events

Events are statements that executed in sequential order according to their times. Event
actions within an event are then executed in sequential order.

Event = [x x : x x] (Event action)*
Event action = { actor , action, stringoptional, intoptional }

 Events last as the action dictates. Movement actions take the same length of time to
complete. Calls to Text will display the text until the next Event unless a time in seconds is
specified after. Having an int without a string is invalid.
2.3 Scenes
 Scenes create a scope by organizing the script, separating the Actors involved in them.
Actors are of local scope to the scene they are declared in. SceneStart signifies a fade in, and
StartEnd a fade out.
2.4 Actors
 Actors must be declared prior to being used in a scene. They are local in scope to the
scenes they are declared in. Actors are comprised of a name, initial position in x and y pixel-
coordinates, and an image file to represent them.

 Actor(“Bob”,0,60,”/Bob.jpg”)

3. Functions

3.1 Introduction
 Left
 Right
 Up
 Down
 ULeft
 URight
 DLeft
 DRight
 Text

 The above keywords compose functions. The 8 directional calls move the actor
associated with the action call in that direction in sequential order. Using Text will display the
associated text, if any, with the actor at that time.
3.2 Function Declarations
 Function declarations are to be done first.

 Function(“name”,action,…,action)
3.3 Function Invocations

 Using a function in an event action:
 Function(“hop”,Up,Right,Down)
 [00:30] {Bob,hop}

4. Sample Program

Function(“Hop”,up,down)
Function(“HopRight”,up,right,down)
Function(“HopLeft”,up,left,down)
Function(“DanceM”,up,right,left,left,right,up)
Function(“DanceF”,up,right,left,left,right,down)
SceneStart
Actor(“Jack”,50,50,”/Jack.jpg”)
Actor(“Box1”,50,60,”/OpenBox”)
Actor(“Box2”,60,60,”/OpenBox”)
[00:05]{“Jack”,”Hop”}
[00:07]{“Jack”,”HopRight”}{“Jack”,”Say”,”Now I go into this box!”,3}
[00:11]{“Jack”,”Say”,”The End”,3}{“Jack”,”Down”}
SceneEnd

