
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

The Game of Life 
FINAL PROJECT REPORT 

 
 
 
 

Steven Chen 
Juan Gutierrez 

Vincenzo Zarrillo 
{stc2104, jmg2048, vaz2001}@columbia.edu 

 
 

May 8, 2007 
 
 
 
 
 
 
 
 
 
 
 
 



 Page 1

TABLE OF CONTENTS 
 
 
INTRODUCTION ................................................................................................................. 2 
THE GAME OF LIFE............................................................................................................ 2 
DESIGN AND IMPLEMENTATION ...................................................................................... 3 

Organisms and Game Board ...................................................................................... 3 
Board Representation in System................................................................................ 3 
System Architecture Overview.................................................................................. 4 
Game Logic ................................................................................................................... 6 
TIMING ............................................................................................................................ 7 
VGA ............................................................................................................................... 8 
NIOS PROCESSOR AND SOFTWARE ................................................................................. 8 

ROLE IN THE GROUP AND LESSONS LEARNED................................................................ 9 
Steven Chen .................................................................................................................. 9 
Juan Gutierrez............................................................................................................... 9 
Vincenzo Zarrillo ....................................................................................................... 10 

CODE LISTING ................................................................................................................. 11 
vga_update.vhd........................................................................................................... 11 
hello_world.c............................................................................................................. 26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Page 2

INTRODUCTION 
 
The goal of our project is to design a visualization of the Game of Life as 

described by John Horton Conway.1 The Game of Life is meant to show what 
happens to organisms when they are placed in close proximity to each other. 
Upon giving the Game initial conditions, each successive ‘generation’ (iteration) 
shows the evolution of the organisms.  

 
The ‘board’ of the game is meant to represent the ecosystem in which the 

organisms live in. In Conway’s representation, this is in essence a large grid. 
Each box in the grid represents one organism. Colors are used to indicate 
whether alive or dead. The details of our board are outlined later. 

 
 

 

THE GAME OF LIFE  
 
The Game of Life is not really a game, but more of an algorithm. The only 

user interaction in the game is the passing of the user’s initial conditions to the 
game board.  

 
Each organism on the board (represented by a square) has 8 neighbors as 

illustrated below: 
 
 
 
 
 
 
In order to determine the state of the board on the next generation of the 

game, each organism is examined. A living organism continues to live if it has 
either two or three neighbors which are also living. A dead organism is brought 
to life if it has exactly three neighbors which are also living. In all other scenarios, 
the organism dies or continues to be dead. 

 
Generations continue forever; however, this may not be noticed on the board 

as in many cases, the system reaches a steady state and no new changes to the 
board are introduced. 

 
 
 

                                                 
1 Wikipedia article on the Game of Life: http://en.wikipedia.org/wiki/Conway%27s_game_of_life.  

1 2 3 

6 

4 

7 8 

9 



 Page 3

DESIGN AND IMPLEMENTATION 
 
 
Organisms and Game Board 
 

In order to keep as many components of our design in terms of powers of 
two, the size of our game board is 256x256 organisms. Since each organism is 
represented by one pixel, our game board is 256 pixels tall by 256 pixels wide. 

 
In order to simplify our design when it comes to border conditions, we have 

designated the border around the entire board to be filled with dead organisms. 
Thus, our actual game board is 254x254, a 1.6% reduction from 256x256. 
 
 
Board Representation in System 
 

We represent each organism as one bit in RAM. The following diagram gives 
a representation of the board: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Each of our cells in RAM holds 32 bits. Since our board is 256 bits in length 
and width, we can think of this as having 8 cells of 32 bits per row and 256 rows 
in total. 
 
 
 
 
 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Each ‘cell’ holds 32 bits

8 cells X 32 bits = 256 bits total per row

8 cells X 256 rows = 2048 (211) cells total in board

256

Rows

8 cells per row



 Page 4

System Architecture Overview 
 
Below is the system diagram of our project. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As you can see, the architecture of our project is very simple. The Nios 
Processor is responsible for sending the user specified initial conditions to the 
vga_raster through the Avalon bus. The following is a more detailed look at the 
vga_raster. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FPGA

vga_raster
VGA Video

Port

VGA

Monitor

Nios

Processor

Avalon bus

swap = 0 

swap = 1 

swap = 0 

swap = 1 

RAM 1 

RAM 2 

updater VGA 

‘ Load’ RAM 
From Avalon Bus 

To VGA Video Port 



 Page 5

The vga_raster in essence serves three functions. The first is to accept the 
initial conditions from the Nios Processor across the Avalon bus. The second is to 
take the current state of the board and output it to the screen through the ‘VGA’ 
block. The last, but equally important job of the vga_raster is to update the 
current state of the board and output the next generation to another block of 
RAM.  

 
As you can see, our design contains two main RAM components, RAM 1 and 

RAM 2. These two components were generated using the MegaWizard function 
in Quartus. Below is a block diagram look at our RAM components. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In order to have a system where data could be read out of RAM to be 

updated and also be read out of RAM to be output to the screen, we used dual-
port RAMs generated from the MegaWizard. The reason we had two RAMs was 
for double buffering purposes – one RAM was used to hold the next iteration 
while the other one was used to hold the current iteration. When the updater 
part of the vga_raster was done updating, a flag would be raised and the two 
RAMs would be swapped, making what was current the next RAM and vice 
versa. 
 

q_b (32 bits)

q_a (32 bits)

address_a (11 bits)

data_a (32 bits)

clock

address_b (32 bits)

data_b (1 bit)

wren_b (1 bit)

wren_a (1 bit)

To updater

To VGA

From

Updater

From

VGA



 Page 6

Game Logic 
 

The game logic in its entirety was done by the updater component of 
vga_raster. The following diagram illustrates an overview of how our system 
updates for the next generation: 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

There are 3 34-bit shift registers that are meant to hold the contents of one 
RAM 1 cell (as discussed earlier on). The 2 bits of excess are required for the next 
time the register is loaded with the adjacent cell’s bits. The reason we load three 
rows is because we need to examine the 8 surrounding neighbors of each cell in 
order to determine its life or death for the next generation. The variable 
countNeighbors holds the value of how many surrounding neighbors are alive 
(hold a value of 1). Depending on whether the current organism we are 
examining is dead or alive, the appropriate next generation value is written to a 
32-bit register. Upon filling the 32-bit register with data, this register is then 
written to RAM 2.  

1 0 1 … 0 

0 0 0 … 0 

0 0 1 … 0 

sr_pos 

dataOut1 

dataOut2 

dataOut3 

34 - bit registers 

0 0 … 1 outRegister 

32 - bit register 

33 0 

31 0 

currentPositionInOutput 

countNeighbors: 0011 

From RAM 1 

To RAM 2 

1 

0 

0 



 Page 7

TIMING 
 

Initially, the VGA is outputting nothing to monitor (nothing in terms of the 
board – the whole monitor outputs blue waiting for the first RAM to be loaded 
and read). Software passes 32 bits to each address space on the Avalon bus. In 
software, because Avalon runs on a 50 MHz clock and VGA runs on a 25 MHz 
clock (our RAM’s are implemented in the VGA raster and connected to the same 
clock), there is a delay between software writes, to make sure enough clock 
cycles have passed by so that the data is securely passed from the 50 MHz 
Avalon bus to the 25 MHz RAM. 

 
After software passes the last address to hardware, the raster then begins 

reading from the first RAM. There is a displayRate signal defined in hardware, 
which counts up to about 3 million clock cycles, and then calls for an update to 
occur. While the update is occurring, VGA continues to read from the same RAM 
(due to our dual port RAM implementation). The reading that VGA does 
requires that just before we finish looking at the last bit, we need to load the next 
address from RAM so that we output the right bit that corresponds to the current 
pixel position. 

 
When an update needs to occur, it is activated when the VGA has reached the 

last address of the first RAM (when we’re no longer on the board). We needed to 
read in three rows at a time and because there are 8 addresses of 32 bits in each 
of the 256 rows, we first need to read 0, 8, and 16, write to 8 then, 1,9,17, write to 
9, etc., etc. (the top row and bottom row were a border of zeros that we hard 
coded and the side columns were also zeros – hence we can just write to address 
8 at the very beginning). With each read, we waited about 2 clock cycles AFTER 
we passed what we wanted to RAM (one cycle for RAM to get the address, one 
cycle to make sure RAM had enough time to send it out to its output bus). 

 
The next part that occurs is the analysis of neighbors. At first we tried 

counting all the neighbors at once and that simply and frankly does not work. 
We check for one neighbor at a time and after searching the last neighbor, we 
look at the cell being examined and write the output bit to the outRegister (which 
will be written to the “next” RAM). This increased the updating time but it was 
not a problem because VGA checks if the updater is done, and if so, it swaps, but 
only when it wants to. So there is actually a segment of time where the updater is 
not doing anything because it has already completed its cycle, but VGA needs to 
finish reading and outputting. Therefore, just before you get the beginning of the 
board, VGA checks if updater has completed, and if so, the RAM swap occurs 
and VGA reads from the “next” RAM and updater will read from “next” RAM 
and write back to “current.” 
 



 Page 8

VGA  
 

The job of the VGA component of the vga_raster was to properly output bits 
from RAM onto the screen. Since our game board was 256px by 256px, we 
centered the board and told the raster that any pixels outside of the 256x256 
board should be colored blue. Then in order to determine what organisms were 
alive or dead, we read bit by bit the contents of RAM. If the bit was 1, we would 
color the pixel white; otherwise, we could color it blue.  

 
 
NIOS PROCESSOR AND SOFTWARE 
 

This project did not make heavy use of software. Thus the Nios processor 
implementation along with the Avalon bus implementation was very much like 
that of lab 3. We set the initial conditions (patterns of bits) in our C program and 
then let the hardware take over. Of note is the following macro: 

 
#define IOWR_VGA_DATA(base,offset,data) IOWR_32DIRECT(base,offset,data) 

 
This macro was used to write conditions directly to the hardware. For 

example,  
 

IOWR_VGA_DATA(VGA_BASE, 1044,7); 

 
would write the value 7 (represented as 0........0111 on the board) into address 

1044.  
 
 
 
 
 
 
 
 
 
 



 Page 9

ROLE IN THE GROUP AND LESSONS LEARNED 
 
 
Steven Chen 
 

Embedded System Design is really like no other class I’ve taken in my four 
years at Columbia. While the foundation of knowledge was laid in the computer 
science and electrical engineering classes I have taken, much of the learning in 
this class happens in the lab – writing VHDL code, looking at timing diagrams, 
drawing out designs, etc. 

 
During this project, I was primarily responsible for designing and 

implementation of the Game of Life logic. This design underwent many ideas 
and changes and finally with the assistance of Professor Edwards and our TA 
Yingjian, we were able to come up with a reasonable design. Furthermore, I was 
also responsible for putting together the design document, final presentation and 
this report.   
 

A key learning experience for me was to stop thinking about the way I 
programmed in software and think more about clock cycles and what can and 
should happen after every clock cycle. The timing analyzer proved to be one of 
the most important tools during our implementation. We cannot stress how 
important the analyzer was to our group. Also, with long compile times (well 
over 5 minutes) the process is a lot longer than in software so clean designs will 
save you much time compiling. 

 
As with what most other students in this class will say, it is never too early to 

start working on this project. No matter how thought-out a design you have, you 
have probably left a crucial component out or have made over-simplifying 
assumptions that will render your design near useless. Thus, it is never too early 
to start working on this project. 
 
 
Juan Gutierrez 
 

I took on a lot of responsibility for this project. I worked on all coding aspects 
of the project, but focused mostly on the updater and the VGA. Along with Steve 
and Vinny, I spent most of the time debugging, looking at timing diagrams and 
redesigning parts of the project to ensure proper systems integration. 
 

This class was a crash course in hardware. As a computer science major, I 
have never had to deal with clock cycles and timing. My advice to future groups 
is to start using the timing simulator early and often. The simulator will save you 



 Page 10 

the trouble of not knowing what’s going on and guessing what may or may not 
be happening. Without the simulator, there’s no chance we would have been half 
as successful as we were. As a group that ran into multiple design and 
implementation problems, my best advice would be to consult the professor and 
the teaching assistants for as much advice as possible because they probably 
know the best way to get a project done! Lastly, I’d encourage all future groups 
to test every possible condition before moving onwards. We ran into a condition 
that partially broke the system towards the end of the project and had a very 
difficult time looking for the source of the problem. 

 
 
Vincenzo Zarrillo 
 

With Juan, the main parts of the project I worked on was the Nios and Avalon 
aspects of the project in addition to the complete integration of the system – 
making sure the different parts of the system could talk to each other. However, 
most of the time I, along with the rest of the group, was designing and 
redesigning the different parts of the system and debugging any problems that 
would come up. This involved a lot of time looking at simulator diagrams, the 
most important tool of our project. 

 
The main advice I’d give to future groups is the same advice I’ve seen past 

groups say in their reports: Start early! In addition, taking more time at the 
beginning to design the system and constantly talking to the TAs is a good way 
to go about this project. Also, like I mentioned earlier, the only way to make sure 
you have the timing right, which was crucial in a system like ours where a lot of 
bits were being moved around, examined, etc., is to use the timing simulator as 
much as possible. 

 
 



 Page 11 

CODE LISTING 
 
vga_update.vhd 
 

-----------------------------------------------------------------------

-------- 

-- 

-- Game of Live/VGA raster display 

-- 

-- Juan, Steve, Vinny - Team 24 

-- 

-----------------------------------------------------------------------

-------- 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

entity vga_raster is 

   

  port ( 

    reset : in std_logic; 

    clk25_diff   : in std_logic;                    -- Should be 25.125 

MHz 

 

    signal avs_s1_clk, 

    avs_s1_reset_n, 

    avs_s1_read, 

    avs_s1_write, 

    avs_s1_chipselect : in std_logic; 

    signal avs_s1_address : in std_logic_vector(10 downto 0); 

    signal avs_s1_readdata : out std_logic_vector(31 downto 0); 

    signal avs_s1_writedata : in std_logic_vector(31 downto 0); 

     

    HEX : out std_logic_vector(6 downto 0); 

 

    VGA_CLK,                                 -- Clock 

    VGA_HS,                                  -- H_SYNC 

    VGA_VS,                                  -- V_SYNC 

    VGA_BLANK,                               -- BLANK 

    VGA_SYNC : out std_logic;                -- SYNC 

    VGA_R,                                   -- Red[9:0] 

    VGA_G,                                   -- Green[9:0] 

    VGA_B : out std_logic_vector(9 downto 0) -- Blue[9:0] 

  ); 

 

end vga_raster; 

 

architecture rtl of vga_raster is 

 

  component board_mem 

    PORT 

      ( 

        address_a  : IN STD_LOGIC_VECTOR (10 DOWNTO 0); 

        address_b  : IN STD_LOGIC_VECTOR (10 DOWNTO 0); 



 Page 12 

        clock  : IN STD_LOGIC ; 

        data_a  : IN STD_LOGIC_VECTOR (31 DOWNTO 0); 

        data_b  : IN STD_LOGIC_VECTOR (31 DOWNTO 0); 

        wren_a  : IN STD_LOGIC  := '0'; 

        wren_b  : IN STD_LOGIC  := '0'; 

        q_a  : OUT STD_LOGIC_VECTOR (31 DOWNTO 0); 

        q_b  : OUT STD_LOGIC_VECTOR (31 DOWNTO 0) 

        ); 

  end component; 

  -- Video parameters 

   

  constant HTOTAL       : integer := 800; 

  constant HSYNC        : integer := 96; 

  constant HBACK_PORCH  : integer := 48; 

  constant HACTIVE      : integer := 640; 

  constant HFRONT_PORCH : integer := 16; 

   

  constant VTOTAL       : integer := 525; 

  constant VSYNC        : integer := 2; 

  constant VBACK_PORCH  : integer := 33; 

  constant VACTIVE      : integer := 480; 

  constant VFRONT_PORCH : integer := 10; 

   

  --Hpixel_pos - starts at 0 

  signal Hpixel_pos  : std_logic_vector(10 downto 0) := 

"00000000000"; 

 

  --Vpixel_pos - starts at 0 

  signal Vpixel_pos  : std_logic_vector(10 downto 0) := 

"00000000000"; 

 

  -- Signals for the video controller 

  signal Hcount : std_logic_vector(9 downto 0);  -- Horizontal position 

(0-800) 

  signal Vcount : std_logic_vector(9 downto 0);  -- Vertical position 

(0-524) 

  signal EndOfLine, EndOfField : std_logic; 

 

  signal vga_hblank, vga_hsync, 

    vga_vblank, vga_vsync : std_logic;  -- Sync. signals 

 

  signal rectangle_h, rectangle_v, rectangle : std_logic;  -- rectangle 

area 

 

  signal dataToCurrent_a : std_logic_vector(31 downto 0); 

  signal junkData    : std_logic_vector(31 downto 0); 

  signal AddrToCurrent_a : std_logic_vector(10 downto 0) := 

"00000000000"; 

  signal AddrToCurrent_b : std_logic_vector(10 downto 0) := 

"00000000000"; 

  signal wrenToCurrent_a : std_logic := '0'; 

  signal qFromCurrent_a  : std_logic_vector(31 downto 0); 

  signal qFromCurrent_b  : std_logic_vector(31 downto 0); 

 

  signal dataToNext_a : std_logic_vector(31 downto 0); 

  signal AddrToNext_a : std_logic_vector(10 downto 0) := "00000000000"; 

  signal AddrToNext_b : std_logic_vector(10 downto 0) := "00000000000"; 



 Page 13 

  signal wrenToNext_a : std_logic := '0'; 

  signal qFromNext_a  : std_logic_vector(31 downto 0); 

  signal qFromNext_b  : std_logic_vector(31 downto 0); 

 

  signal displayRate    : std_logic_vector(17 downto 0) := 

"000000000000000000"; 

 

  -- game logic related 

  signal sr_counter             :   std_logic_vector(3 downto 0) 

:= "0000"; 

  signal sr_pos   :   integer := 33; 

  SIGNAL countNeighbors         :  STD_LOGIC_VECTOR(3 downto 0) 

:= "0000"; 

  --SIGNAL currentPositionInOutput :  STD_LOGIC_VECTOR(4 

downto 0) := "11111"; 

  signal currentPositionInOutput :              integer := 31; 

  signal beginningRow   :       std_logic := '1'; 

  signal rowStartCount                  : std_logic_vector(1 downto 0) 

:= "00"; 

 

  signal pass : std_logic := '1'; 

  signal pass_counter : std_logic_vector(3 downto 0) := "0000"; 

  

  SIGNAL dataOut1,dataOut2,dataOut3 : STD_LOGIC_VECTOR(33 downto 0) 

:= "0000000000000000000000000000000000"; 

  SIGNAL outRegister    : STD_LOGIC_VECTOR(31 

downto 0) := "00000000000000000000000000000000"; 

 

  signal address : std_logic_vector(10 downto 0) := "00000000000"; 

 

  --signal bitPos_ram : std_logic_vector(4 downto 0) := "11111"; 

  signal hexToHEX     : std_logic_vector(6 downto 0) := 

"1111111"; 

  signal bitPos    : std_logic_vector(4 downto 0) := 

"11111"; 

  signal VGAReg    : std_logic_vector(31 downto 0); 

  signal videoBit    : std_logic := '0'; 

  signal junkBit   : std_logic := '0'; 

  signal load_new    : std_logic := '1'; 

 

  --signal first_pass : std_logic := '1'; 

  signal update : std_logic := '0'; 

  signal swap : std_logic := '0'; 

  signal done_update : std_logic := '0'; 

  --signal load_next : std_logic := '0'; 

 

  signal loadData_a, loadData_b, loadq_a, loadq_b : std_logic_vector(31 

downto 0); 

  signal loadAddr_a, loadAddr_b : std_logic_vector(10 downto 0) := 

"00000000000"; 

  signal loadwren_a, loadwren_b : std_logic := '0'; 

 

  signal ram_address : std_logic_vector(10 downto 0) := "00000000000"; 

  signal load_address : std_logic_vector(10 downto 0) := "00000000000"; 

  signal ram_loaded : std_logic := '0'; 

  signal loaded : std_logic := '0'; 

  signal loadDelay : std_logic_vector(1 downto 0) := "00"; 



 Page 14 

   

begin 

  loadRAM : board_mem PORT MAP 

    ( 

      clock => clk25_diff, 

      data_a => loadData_a, 

      data_b => loadData_b, 

      address_a => loadAddr_a, 

      address_b => loadAddr_b, 

      wren_a => loadwren_a, 

      wren_b => loadwren_b, 

      q_a => loadq_a, 

      q_b => loadq_b 

   );   

  currentRAM : board_mem PORT MAP 

    ( 

      clock => clk25_diff, 

      data_a => dataToCurrent_a, 

      data_b => junkData, 

      address_a => AddrToCurrent_a, 

      address_b => AddrToCurrent_b, 

      wren_a => wrenToCurrent_a, 

      wren_b => junkBit, 

      q_a => qFromCurrent_a, 

      q_b => qFromCurrent_b 

      ); 

   

  nextRAM : board_mem PORT MAP 

    ( 

      clock => clk25_diff, 

      data_a => dataToNext_a, 

      data_b => junkData, 

      address_a => AddrToNext_a, 

      address_b => AddrToNext_b, 

      wren_a => wrenToNext_a, 

      wren_b => junkBit, 

      q_a => qFromNext_a, 

      q_b => qFromNext_b 

      ); 

 

 load : process (avs_s1_clk) 

 begin 

   if avs_s1_clk'event and avs_s1_clk = '1' then 

  if avs_s1_reset_n = '0' then 

  ram_loaded <= '0'; 

   elsif avs_s1_chipselect = '1' and ram_loaded = '0' then 

        if avs_s1_write = '1' then 

          loadwren_a <= '1'; 

          loadAddr_a <= avs_s1_address; 

          loadData_a <= avs_s1_writedata; 

          if avs_s1_address = "11111111111" then 

            ram_loaded <= '1'; 

          end if; 

        end if; 

   end if; 

    end if; 

  end process load; 



 Page 15 

 

  -- Horizontal and vertical counters 

 

  HCounter : process (clk25_diff, reset) 

  begin     

    if reset = '1' then 

      Hcount <= (others => '0'); 

    elsif clk25_diff'event and clk25_diff = '1' then 

      if EndOfLine = '1' then 

        Hcount <= (others => '0'); 

        Hpixel_pos <= "00000000000"; 

      else 

        if Hcount = HSYNC + HBACK_PORCH + 192 + Hpixel_pos then 

          Hpixel_pos <= (Hpixel_pos + 1); 

        end if; 

        Hcount <= Hcount + 1; 

      end if; 

    end if; 

  end process HCounter; 

 

  EndOfLine <= '1' when Hcount = HTOTAL - 1 else '0'; 

  

  VCounter: process (clk25_diff, reset) 

  begin 

    if reset = '1' then 

      Vcount <= (others => '0'); 

    elsif clk25_diff'event and clk25_diff = '1' then 

      if EndOfLine = '1' then 

        if EndOfField = '1' then 

          Vcount <= (others => '0'); 

          Vpixel_pos <= "00000000000"; 

        else 

          if VCount = VSYNC + VBACK_PORCH + 112 + Vpixel_pos then 

            Vpixel_pos <= (Vpixel_pos + 1); 

          end if; 

          Vcount <= Vcount + 1; 

        end if; 

      end if; 

    end if; 

  end process VCounter; 

 

  EndOfField <= '1' when Vcount = VTOTAL - 1 else '0'; 

 

  -- State machines to generate HSYNC, VSYNC, HBLANK, and VBLANK 

 

  HSyncGen : process (clk25_diff, reset) 

  begin     

    if reset = '1' then 

      vga_hsync <= '1'; 

    elsif clk25_diff'event and clk25_diff = '1' then 

      if EndOfLine = '1' then 

        vga_hsync <= '1'; 

      elsif Hcount = HSYNC - 1 then 

        vga_hsync <= '0'; 

      end if;       

    end if; 

  end process HSyncGen; 



 Page 16 

   

  HBlankGen : process (clk25_diff, reset) 

  begin     

    if reset = '1' then 

      vga_hblank <= '1'; 

    elsif clk25_diff'event and clk25_diff = '1' then 

      if Hcount = HSYNC + HBACK_PORCH then 

        vga_hblank <= '0'; 

      elsif Hcount = HSYNC + HBACK_PORCH + HACTIVE then 

        vga_hblank <= '1'; 

      end if;       

    end if; 

  end process HBlankGen; 

 

  VSyncGen : process (clk25_diff, reset) 

  begin     

    if reset = '1' then 

      vga_vsync <= '1'; 

    elsif clk25_diff'event and clk25_diff = '1' then 

      if EndOfLine ='1' then 

        if EndOfField = '1' then 

          vga_vsync <= '1'; 

        elsif Vcount = VSYNC - 1 then 

          vga_vsync <= '0'; 

        end if; 

      end if;       

    end if; 

  end process VSyncGen; 

 

  VBlankGen : process (clk25_diff, reset) 

  begin     

    if reset = '1' then 

      vga_vblank <= '1'; 

    elsif clk25_diff'event and clk25_diff = '1' then 

      if EndOfLine = '1' then 

        if Vcount = VSYNC + VBACK_PORCH - 1 then 

          vga_vblank <= '0'; 

        elsif Vcount = VSYNC + VBACK_PORCH + VACTIVE - 1 then 

          vga_vblank <= '1'; 

        end if; 

      end if;       

    end if; 

  end process VBlankGen; 

 

  updater : process (clk25_diff) 

  begin 

    if clk25_diff'event and clk25_diff = '1' then 

   if ram_loaded = '0' then 

  load_address <= (others => '0'); 

  loaded <= '0'; 

      elsif ram_loaded = '1' and loaded = '0' then 

        if load_address = "11111111111" then 

          loaded <= '1'; 

    wrenToCurrent_a <= '0'; 

    AddrToCurrent_a <= (others => '0');   

        elsif loadDelay = "00" then 

          wrenToCurrent_a <= '1'; 



 Page 17 

          AddrToCurrent_a <= load_address; 

          loadAddr_b <= load_address; 

        elsif loadDelay = "11" then 

          dataToCurrent_a <= loadq_b; 

          load_address <= (load_address + 1); 

        end if; 

        loadDelay <= (loadDelay + 1); 

      elsif update = '1' and done_update = '0' then 

        if swap = '0' then  

          if(load_new = '1') then 

            -- initial load 

            if sr_counter = "0000" then 

              address <= AddrToCurrent_a; 

              if AddrToCurrent_a = "11111111000" then 

                dataToNext_a <= outRegister; 

                wrenToNext_a <= '1'; 

                AddrTonext_a <= "11111111111"; 

                AddrToCurrent_a <= "00000000000"; 

                done_update <= '1'; 

                dataOut1 <= (others => '0'); 

                dataOut2 <= (others => '0'); 

                dataOut3 <= (others => '0'); 

                outRegister <= (others => '0'); 

                sr_counter <= "1111"; 

              elsif AddrToCurrent_a(3 downto 0) = "0000" or 

AddrToCurrent_a(3 downto 0) = "1000" then 

                beginningRow <= '1'; 

                wrenToNext_a <= '1'; 

                dataToNext_a <= outRegister; 

                outRegister <= (others => '0'); 

                AddrToNext_a <= (AddrToCurrent_a + "111"); 

              end if; 

            elsif(sr_counter = "0011") then 

              dataOut1(31 downto 0) <= qFromCurrent_a; 

            elsif(sr_counter = "0100") then 

              AddrToCurrent_a <= (address + "1000"); 

            elsif(sr_counter = "0111") then 

              dataOut2(31 downto 0) <= qFromCurrent_a; 

            elsif(sr_counter = "1000") then 

              AddrToCurrent_a <= (address + "10000"); 

            elsif(sr_counter = "1011") then 

              dataOut3(31 downto 0) <= qFromCurrent_a; 

              AddrToCurrent_a <= address; 

              load_new <= '0'; 

              wrenToNext_a <= '0'; 

              if beginningRow = '1' then 

                sr_pos <= 31; 

                currentPositionInOutput <= 30; 

              else 

                sr_pos <= 33; 

                --currentPositionInOutput <= 31; 

              end if; 

            end if; 

            sr_counter <= (sr_counter + 1); 

          else 



 Page 18 

            if sr_pos = 32 and currentPositionInOutput = -1 then--and 

beginningRow = '0' and (currentPositionInOutput = 0 or 

currentPositionInOutput = -1) then 

              wrenToNext_a <= '1'; 

              dataToNext_a <= outRegister; 

              AddrToNext_a <= (AddrToCurrent_a + "111"); 

              --outRegister <= (others => '0'); 

              pass <= '1'; 

              currentPositionInOutput <= 31; 

            --elsif sr_pos = 31 and currentPositionInOutput = 0 then 

              --pass <= '1'; 

              --currentPositionInOutput <= 31; 

            elsif (sr_pos > 1) and pass_counter < 8 then 

             if (dataOut1(sr_pos) = '1' and pass_counter = 0) then 

               countNeighbors <= (countNeighbors + dataOut1(sr_pos)); 

             end if; 

             if (dataOut1(sr_pos-1) = '1' and pass_counter = 1) then 

               countNeighbors <= (countNeighbors + dataOut1(sr_pos-1)); 

             end if; 

             if dataOut1(sr_pos-2) = '1' and pass_counter = 2 then 

               countNeighbors <= (countNeighbors + dataOut1(sr_pos-2)); 

             end if; 

             if dataOut2(sr_pos) = '1' and pass_counter = 3 then 

               countNeighbors <= (countNeighbors + dataOut2(sr_pos)); 

             end if; 

             if dataOut2(sr_pos-2) = '1'and pass_counter = 4 then 

               countNeighbors <= (countNeighbors + dataOut2(sr_pos-2)); 

             end if; 

             if dataOut3(sr_pos) = '1' and pass_counter = 5 then 

               countNeighbors <= (countNeighbors + dataOut3(sr_pos)); 

             end if; 

             if dataOut3(sr_pos-1) = '1' and pass_counter = 6 then 

               countNeighbors <= (countNeighbors + dataOut3(sr_pos-1)); 

             end if; 

             if dataOut3(sr_pos-2) = '1' and pass_counter = 7 then 

               countNeighbors <= (countNeighbors + dataOut3(sr_pos-2)); 

             end if; 

             pass <= '0'; 

             pass_counter <= (pass_counter + 1); 

            elsif pass = '0' then 

              if dataOut2(sr_pos-1) = '1' then 

                countNeighbors <= (countNeighbors + 1); 

                if countNeighbors = "0010" or countNeighbors = "0011" 

then 

                  --if beginningRow = '1' then 

                    --outRegister(sr_pos-1) <= '1'; 

                  --else 

                    outRegister(currentPositionInOutput) <= '1'; 

                  --end if; 

                else 

                  --if beginningRow = '1' then 

                    --outRegister(sr_pos-1) <= '0'; 

                  --else 

                    outRegister(currentPositionInOutput) <= '0'; 

                  --end if; 

                end if; 

              else 



 Page 19 

                if countNeighbors = "0011" then 

                  --if beginningRow = '1' then 

                    --outRegister(sr_pos-1) <= '1'; 

                  --else 

                    outRegister(currentPositionInOutput) <= '1'; 

                  --end if; 

                else 

                  --if beginningRow = '1' then 

                    --outRegister(sr_pos-1) <= '0'; 

                  --else 

                    outRegister(currentPositionInOutput) <= '0'; 

                  --end if; 

                end if; 

              end if; 

              if sr_pos = 2 then 

                wrenToNext_a <= '0'; 

              end if; 

              countNeighbors <= "0000"; 

              currentPositionInOutput <= (currentPositionInOutput - 1); 

              pass_counter <= "0000"; 

              sr_pos <= (sr_pos - 1);             

              pass <= '1'; 

            else 

              if beginningRow = '1' then 

                outRegister(31) <= '0'; 

              end if; 

              dataOut1(33 downto 32) <= dataOut1(1 downto 0); 

              dataOut2(33 downto 32) <= dataOut2(1 downto 0); 

              dataOut3(33 downto 32) <= dataOut3(1 downto 0); 

              AddrToCurrent_a <= AddrToCurrent_a + 1; 

              load_new <= '1'; 

              pass <= '1'; 

              address <= (others => '0'); 

              pass_counter <= "0000"; 

              beginningRow <= '0'; 

              sr_counter <= "0000"; 

              sr_pos <= 33; 

              countNeighbors <= "0000"; 

            end if; 

          end if; 

        elsif swap = '1' then 

          --swap = '1'        

          if(load_new = '1') then 

            -- initial load 

            if sr_counter = "0000" then 

              address <= AddrToNext_a; 

              if AddrToNext_a = "11111111000" then 

                dataToCurrent_a <= outRegister; 

                wrenToCurrent_a <= '1'; 

                AddrToCurrent_a <= "11111111111"; 

                AddrToNext_a <= "00000000000"; 

                done_update <= '1'; 

                dataOut1 <= (others => '0'); 

                dataOut2 <= (others => '0'); 

                dataOut3 <= (others => '0'); 

                outRegister <= (others => '0'); 

                sr_counter <= "1111"; 



 Page 20 

              elsif AddrToNext_a(3 downto 0) = "0000" or AddrToNext_a(3 

downto 0) = "1000" then 

                beginningRow <= '1'; 

                wrenToCurrent_a <= '1'; 

                dataToCurrent_a <= outRegister; 

                AddrToCurrent_a <= (AddrToNext_a + "111"); 

              end if; 

            elsif(sr_counter = "0011") then 

              dataOut1(31 downto 0) <= qFromNext_a; 

            elsif(sr_counter = "0100") then 

              AddrToNext_a <= (address + "1000"); 

            elsif(sr_counter = "0111") then 

              dataOut2(31 downto 0) <= qFromNext_a; 

            elsif(sr_counter = "1000") then 

              AddrToNext_a <= (address + "10000"); 

            elsif(sr_counter = "1011") then 

              dataOut3(31 downto 0) <= qFromNext_a; 

              AddrToNext_a <= address; 

              load_new <= '0'; 

              wrenToCurrent_a <= '0'; 

              if beginningRow = '1' then 

                sr_pos <= 31; 

                currentPositionInOutput <= 30; 

              else 

                sr_pos <= 33; 

                --currentPositionInOutput <= 31; 

              end if; 

            end if; 

            sr_counter <= (sr_counter + 1); 

          else            

            if sr_pos = 32 and currentPositionInOutput = -1 then--and 

beginningRow = '0' and (currentPositionInOutput = 0 or 

currentPositionInOutput = -1) then 

              wrenToCurrent_a <= '1'; 

              dataToCurrent_a <= outRegister; 

              AddrToCurrent_a <= (AddrToNext_a + "111"); 

              --outRegister <= (others => '0'); 

              pass <= '1'; 

              currentPositionInOutput <= 31; 

            --elsif sr_pos = 31 and currentPositionInOutput = 0 then 

              --pass <= '1'; 

              --currentPositionInOutput <= 31; 

            elsif sr_pos = 31 and currentPositionInOutput = 0 then 

              pass <= '1'; 

              currentPositionInOutput <= 31; 

            elsif (sr_pos > 1) and pass_counter < 8 then 

             if (dataOut1(sr_pos) = '1' and pass_counter = 0) then 

               countNeighbors <= (countNeighbors + dataOut1(sr_pos)); 

             end if; 

             if (dataOut1(sr_pos-1) = '1' and pass_counter = 1) then 

               countNeighbors <= (countNeighbors + dataOut1(sr_pos-1)); 

             end if; 

             if dataOut1(sr_pos-2) = '1' and pass_counter = 2 then 

               countNeighbors <= (countNeighbors + dataOut1(sr_pos-2)); 

             end if; 

             if dataOut2(sr_pos) = '1' and pass_counter = 3 then 

               countNeighbors <= (countNeighbors + dataOut2(sr_pos)); 



 Page 21 

             end if; 

             if dataOut2(sr_pos-2) = '1'and pass_counter = 4 then 

               countNeighbors <= (countNeighbors + dataOut2(sr_pos-2)); 

             end if; 

             if dataOut3(sr_pos) = '1' and pass_counter = 5 then 

               countNeighbors <= (countNeighbors + dataOut3(sr_pos)); 

             end if; 

             if dataOut3(sr_pos-1) = '1' and pass_counter = 6 then 

               countNeighbors <= (countNeighbors + dataOut3(sr_pos-1)); 

             end if; 

             if dataOut3(sr_pos-2) = '1' and pass_counter = 7 then 

               countNeighbors <= (countNeighbors + dataOut3(sr_pos-2)); 

             end if; 

             pass <= '0'; 

             pass_counter <= (pass_counter + 1); 

            elsif pass = '0' then 

              if dataOut2(sr_pos-1) = '1' then 

                countNeighbors <= (countNeighbors + 1); 

                if countNeighbors = "0010" or countNeighbors = "0011" 

then 

                  --if beginningRow = '1' then 

                    --outRegister(sr_pos-1) <= '1'; 

                  --else 

                    outRegister(currentPositionInOutput) <= '1'; 

                  --end if; 

                else 

                  --if beginningRow = '1' then 

                    --outRegister(sr_pos-1) <= '0'; 

                  --else 

                    outRegister(currentPositionInOutput) <= '0'; 

                  --end if; 

                end if; 

              else 

                if countNeighbors = "0011" then 

                  --if beginningRow = '1' then 

                    --outRegister(sr_pos-1) <= '1'; 

                  --else 

                    outRegister(currentPositionInOutput) <= '1'; 

                  --end if; 

                else 

                  --if beginningRow = '1' then 

                    --outRegister(sr_pos-1) <= '0'; 

                  --else 

                    outRegister(currentPositionInOutput) <= '0'; 

                  --end if; 

                end if; 

              end if; 

              if sr_pos = 2 then 

                wrenToCurrent_a <= '0'; 

              end if; 

              countNeighbors <= "0000"; 

              currentPositionInOutput <= (currentPositionInOutput - 1); 

              pass_counter <= "0000"; 

              sr_pos <= (sr_pos - 1);             

              pass <= '1'; 

            else 

              if beginningRow = '0' then 



 Page 22 

                outRegister(31) <= '0'; 

              end if; 

              dataOut1(33 downto 32) <= dataOut1(1 downto 0); 

              dataOut2(33 downto 32) <= dataOut2(1 downto 0); 

              dataOut3(33 downto 32) <= dataOut3(1 downto 0); 

              AddrToNext_a <= AddrToNext_a + 1; 

              load_new <= '1'; 

              pass <= '1'; 

              address <= (others => '0'); 

              pass_counter <= "0000"; 

              beginningRow <= '0'; 

              sr_counter <= "0000"; 

              sr_pos <= 33; 

              countNeighbors <= "0000"; 

            end if; 

          end if; 

        end if; 

      elsif update = '0' and done_update = '1' then 

        dataOut1 <= "0000000000000000000000000000000000"; 

        dataOut2 <= "0000000000000000000000000000000000"; 

        dataOut3 <= "0000000000000000000000000000000000"; 

        outRegister <= (others => '0'); 

        address <= (others => '0'); 

        sr_counter <= "0000"; 

        wrenToNext_a <= '0'; 

        wrenToCurrent_a <= '0'; 

        AddrToNext_a <= "00000000000"; 

        AddrToCurrent_a <= "00000000000"; 

        done_update <= '0'; 

        hexToHEX <= (hexToHEX + 1); 

        swap <= (not swap); 

      end if; 

    end if; 

  end process updater;   

                

  HEX <= hexToHEX; 

 

  -- Rectangle generator 

 

  RectangleHGen : process (clk25_diff, reset) 

  begin 

    if reset = '1' then 

      rectangle_h <= '1'; 

    elsif clk25_diff'event and clk25_diff = '1' then 

   if ram_loaded = '0' then 

  rectangle_h <= '0'; 

   elsif swap = '0' then 

        if (Vcount = VSYNC + VBACK_PORCH - 1 + 111) then 

          if done_update = '1' then 

            update <= '0';                       

          end if; 

          rectangle_h <= '0'; 

          VGAReg <= qFromCurrent_b; 

          bitPos <= "11111"; 

        elsif (Vcount = VSYNC + VBACK_PORCH - 1 + 369) then 

          rectangle_h <= '0'; 

          AddrToCurrent_b <= "00000000000"; 



 Page 23 

          displayRate <= (displayRate + 1); 

          if(displayRate = "00000000111111111") then 

            displayRate <= "000000000000000000"; 

            update <= '1'; 

          end if; 

        elsif (Hcount > HSYNC + HBACK_PORCH + 191) and (Hcount < HSYNC 

+ HBACK_PORCH + 449) and 

          (Vcount > VSYNC + VBACK_PORCH - 1 + 111) and (Vcount < VSYNC 

+ VBACK_PORCH - 1 + 368) then 

          videoBit <= VGAReg(conv_integer(bitPos)); 

          if (videoBit = '1') then 

            rectangle_h <= '1'; 

          else 

            rectangle_h <= '0'; 

          end if; 

           

          if (bitPos = "10000") then 

            AddrToCurrent_b <= (AddrToCurrent_b + 1); 

          elsif bitPos= "00000" then 

            VGAReg <= qFromCurrent_b; 

          end if; 

          bitPos <= (bitPos - 1); 

        else 

          bitPos <= "11111"; 

        --VGAReg <= qFromCurrent_b; 

          rectangle_h <= '0'; 

        end if; 

      elsif swap = '1' then 

        -- swap = '1' 

        if (Vcount = VSYNC + VBACK_PORCH - 1 + 111) then  

          update <= '0'; 

          rectangle_h <= '0'; 

          VGAReg <= qFromNext_b; 

          bitPos <= "11111"; 

        elsif (Vcount = VSYNC + VBACK_PORCH - 1 + 369) then 

          rectangle_h <= '0'; 

          AddrToNext_b <= "00000000000"; 

          displayRate <= (displayRate + 1); 

          if(displayRate = "00000000111111111") then 

            displayRate <= "000000000000000000"; 

            --hexToHEX <= (hexToHEX + 1); 

            update <= '1'; 

          end if; 

        elsif (Hcount > HSYNC + HBACK_PORCH + 191) and (Hcount < HSYNC 

+ HBACK_PORCH + 449) and 

          (Vcount > VSYNC + VBACK_PORCH - 1 + 111) and (Vcount < VSYNC 

+ VBACK_PORCH - 1 + 368) then 

          videoBit <= VGAReg(conv_integer(bitPos)); 

          if (videoBit = '1') then 

            rectangle_h <= '1'; 

          else 

            rectangle_h <= '0'; 

          end if; 

           

          if (bitPos = "10000") then 

            AddrToNext_b <= (AddrToNext_b + 1); 

          elsif bitPos= "00000" then 



 Page 24 

            VGAReg <= qFromNext_b; 

          end if; 

          bitPos <= (bitPos - 1); 

        else 

          bitPos <= "11111"; 

          --VGAReg <= qFromNext_b; 

          rectangle_h <= '0'; 

        end if; 

      end if; 

    end if; 

  end process RectangleHGen; 

 

  RectangleVGen : process (clk25_diff, reset) 

  begin 

    if reset = '1' then 

      rectangle_v <= '0'; 

    elsif clk25_diff'event and clk25_diff = '1' then 

   if ram_loaded = '0' then 

  rectangle_v <= '0';   

      elsif EndOfLine = '1' then 

        if (Vcount > VSYNC + VBACK_PORCH - 1 + 367) or (Vcount < VSYNC 

+ VBACK_PORCH - 1 + 112) then 

          rectangle_v <= '0'; 

        else 

          rectangle_v <= '1';   

        end if; 

      end if;       

    end if; 

  end process RectangleVGen; 

 

  rectangle <= rectangle_h and rectangle_v; 

 

  -- Registered video signals going to the video DAC 

 

  VideoOut: process (clk25_diff, reset) 

  begin 

    if reset = '1' then 

      VGA_R <= "0000000000"; 

      VGA_G <= "0000000000"; 

      VGA_B <= "0000000000"; 

    elsif clk25_diff'event and clk25_diff = '1' then 

      if rectangle = '1' then 

        VGA_R <= "1111111111"; 

        VGA_G <= "1111111111"; 

        VGA_B <= "1111111111"; 

      elsif vga_hblank = '0' and vga_vblank ='0' then 

        VGA_R <= "0000000000"; 

        VGA_G <= "0000000000"; 

        VGA_B <= "1111111111"; 

      else 

        VGA_R <= "0000000000"; 

        VGA_G <= "0000000000"; 

        VGA_B <= "0000000000";     

      end if; 

    end if; 

  end process VideoOut; 

 



 Page 25 

  VGA_CLK <= clk25_diff; 

  VGA_HS <= not vga_hsync; 

  VGA_VS <= not vga_vsync; 

  VGA_SYNC <= '0'; 

  VGA_BLANK <= not (vga_hsync or vga_vsync); 

 

end rtl; 



 Page 26 

hello_world.c 
 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <io.h> 

#include <system.h> 

#include <time.h> 

 

#define IOWR_VGA_DATA(base,offset,data) IOWR_32DIRECT(base,offset,data) 

#define IORD_VGA_DATA(base,offset) IORD_32DIRECT(base,offset) 

 

int main(int argc, char* argv[]) 

{ 

    unsigned int thisNumber=0; 

    //int memAddr = 0; 

    time_t seconds; 

    time(&seconds); 

    int i=0; 

    int j=0; 

    srand((unsigned int) seconds); 

 

    printf("Seeded and preparing to write...\n"); 

             

    while(i < 8192) 

    {         

      thisNumber = rand();   

               

      /* 

       *To use each of these two blocks of if statements, make sure 

       * that thisNumber = rand() (above) is commented out. 

       * 

       * 

       * 

       *Border-test flicker 

       */ 

 

      /* 

      thisNumber = 0;       

      if(i == 1044) 

        thisNumber = 1; 

      if(i == 1076) 

        thisNumber = 1; 

      if(i == 1108) 

        thisNumber = 1; 

      */ 

 

      /* 

       *Glider test 

       */ 

 

      /* 

      thisNumber = 0; 

      if (i == 1044) 

        thisNumber = 4; 

      if (i == 1076) 

        thisNumber = 3; 



 Page 27 

      if (i == 1108) 

        thisNumber = 6; 

       */ 

       

      if (i < 32 || i > 8156) 

        thisNumber = 0;       

      printf("Writing %x to: %d\n",thisNumber,i); 

      IOWR_VGA_DATA(VGA_BASE,i,thisNumber); 

      i+=4; 

      while(j < 1000){ 

        ++j; 

      } 

      j=0; 

    } 

  

    return 0; 

} 

 

 

 

 

 

 

 


