
Ordered Set Data Manipulation
Language (Osdm): An Overview

Yong Feng (yf21@columbia.edu)
June 1, 2006

Introduction
Osdm language is a simple interpret language designed to process and manipulate sets of data

associated with time or string as index, such as stock quote or volumes at each point of time

during a time period. Osdm can be used to operate on two values with timeline data, or do

analysis or aggregate operations on a timeline data, such as calculating the sum of the data values

within a time period. Current programming languages do not support timeline data as a first-class

object. You have to write complicate function or class in order to represent the data and to do

those operations.

Osdm
Osdm is a simple, high-level, interpreted, architecture neutral, and portable language specializing
on manipulating ordered set or timeline data in particular.

Simple
Osdm is very simple and easy to use. Because ordered set data becomes the first-class object of

the language, Osdm can easily represent timeline data or ordered set data in general and make it

very simple to operate on those kinds of data. Some analysis and aggregate functions are included

as part of the language to provide common analysis functionality, such as aggregating data from

much longer time period into one-week or one-month data. Therefore, users just need to use the

functions provided by Osdm to specify what they want instead of using user-defined data

structure to hold the data and writing complicate algorithm of implementing it.

High Level
The OSet (Ordered Set) data type of Osdm can directly represent a set of data indexed and

ordered by time or string. Basic operations are provided to directly operate on values with OSet

data type. Osdm also provides some very high-level functions to analyze and aggregate data

values with OSet data type.

Interpreted
Osdm has only a few arithmetic operations and very high-level functions available. The programs

written in Osdm should be relative small, and those programs most probably will run only once a

while. So it makes sense to implement it as an interpreted language. Therefore, user can input the

data, execute some operation, and examine the immediate result step by step.

Architecture Neutral
Osdm is an interpreted language implemented using java. So the code written in Osdm will work

on any platforms where java is supported.

Portable
Osdm is portable because it is architecture neutral, and there is no implementation dependent

aspect in the language specification.

Example
Here is a program written in Osdm to show some basic operations available in the language:

Set DATE_FORMAT “YYYY/MM/DD”

OSet x = ((“2001/03/05”, 200), (“2001/03/09”, 200));

OSet y = ((“2001/03/09”, 200), (“2001/04/5”, 200));

OSet z = x + y;

double totalValue = sum(z);

double maxValue = max(z);

OSet u = aggregate (z, “????/??/DD”, “SUM”);

OSet v = aggregate(z, “YYYY/MM/??”, “SUM”);

In this example, date format is set at the beginning so that the date strings for the index that

matches the format specified can be parsed as dates. If date format is not presented, the index

appears in the Oset data would be treated as strings. Next two lines define two OSet variables as

timeline values. One of the basic arithmetic operations is used in the next line to calculate the

addition of those two values. The result of z is ((“2001/03/05”, 200), (“2001/03/09”, 400),

(“2001/04/05”, 200)). The next two lines calculate the sum and the maximum value of the values

across all the data points. The next line merges the data points that have the same day within a

month into one data point using the operation specified by the third parameter. In this case, u =

((“5”, 400), (“9”, 400)). The last line aggregates the data points in a same month of a same year

into one data point using the operation specified by the third parameter. So the value of v will be

((“2001/03”, 600), (“2001/04”, 200)). The symbol “?” is used as a mask so that the characters of

the index at the same positions as symbol “?” are removed from the index.

Note, values stored in the data of OSet data type will be automatically sorted using its index.

Possible extensions
Since this language is designed to deal with lots of data points, it is very desirable to be able to

accept input from a file and save the result into an output file. It would be nice to display the

result using a chart, or save the result as a XML file so that it can be further processed or to be

displayed by a third party tool that accepts XML file. Also it would be nice if the code could

accept XML file as input. Currently the languages contains only some basically operations and

some basic statements for flow control. More operations and control flow statements might be

needed to handle complicated applications. It might be interesting to extend this language to

handle multi-dimension data such as data that contains time, country, and populations.

Summary
The Osdm language provides a native data type and functions to deal with two dimension data

such as timeline data. Its simplicity, powerful functions, and interpreted way of executing

commands will hopefully make it easy to manipulate two dimension data.

