

Object-Oriented Query Language

A Technical White Paper

Zhongling Li

February 5, 2006

Introduction

Object-Oriented Query Language (OQL) is designed to provide an object-
oriented query interface for traditional relation database systems (RDBMS). The
goal is to bridge the gap between object-oriented programming language
(specifically Java) and set-oriented Standard Query Language (SQL), and make
the persistence layer fit better in an OO system design.

Background

Though object-oriented programming languages such as Java, Smalltalk, C++
and C# have dominated the server-side business application world for many
years, unfortunately object-oriented database did not take off due to numerous
reasons. Relational database still is the majority of persistence mechanism.

The standard programming interface to database is SQL, which was originally
designed for human interaction purposes. As a set oriented language, with very
limited control flow and loose grammar, it slowly becomes a barrier for a pure
object-oriented system design. Within the data access layer, too often we find
developers throw away the beautiful object model, but start concatenating SQL
strings (either directly or indirectly) and create so many messy codes. Even
worse, because of the limitable of SQL, many developers use data access layer,
or the data model itself as the starting point when designing a system. This
ground-up approach tends to make the final system more service-oriented or
more procedural.

OQL wraps the basic SQL language into generic object-oriented APIs, and hide
the underline complexities such as porting to difference databases. It acts as a
mapping tool between objects to rows in database tables, but also has the
capability of manipulating data with control flow. Since the output of OQL
compiler is Java classes, developers can easily integrate OQL into their
applications.

Design Goals

We want to make OQL a simple language and very easy to learn and use for
Java developers. The syntax and grammar is very close to Java instead of SQL.
Actually all the logic of generating SQL strings are completely hidden from OQL
developer.

Object-Oriented

Everything is an object in OQL; there is no primitive type. All operations are
defined at class level, such as Create, Retrieve, Update and Delete (standard
CRUD in SQL). Those very complicated query semantics are nicely wrapped in
Criteria, Projection and Join interfaces. From developers’ perspective, they are
simply dealing with a special set of objects, which happened to be stored in a
relational database transparently to their design model.

Database Generic

OQL will be compiled into Java classes, which use ANSI standard SQL and can
run against any relational databases without modification. This makes application
porting easy, but it also implies a limitation of OQL, we cannot support any
database specific features or improvements. In future releases, we will add
database flavor option to allow optimization for specific databases.

Less Overhead

The code generated by OQL compiler should not be much slower than hand
written native SQL blocks. Since compiler generates all SQL statements (with
optimization in mind, such as using prepared statements, or table join ordering)
instead of concatenating them at runtime, OQL can actually give better
performance in some cases.

Simple

OQL has similar simple syntax and grammar like Java. It has less keyword, and
does not support primitive data type. Since it serves a single purpose of
presenting SQL query, the API is simple and clean.

Easy to Integrate

Since OQL compiler generates Java classes (or other OO language output in
future releases), it is very easy to integrate it into existing systems as data
access layer.

Portable

Java is a portable language runs on most operating systems. With its database
generic feature, OQL is highly portable to many platforms.

Implementation Overview

Entity Definition

Entity is defined in a format similar to a Java class. Actually it is a special type of
Java class internally which maps to a database table. Each entity contains an “id”
field which is the primary key (it is a good design to have surrogate key for every
table in the database).

Entity Address {
 Integer id, // implicit primary key
 String street,
 String city,
 String state,
 String zipCode
}

Standard CRUD operations are defined at entity level.

 // create a new instance of Address
 Address a = Address.create(new Integer(100), "1234 Main Street", "New York", "New York",
"100020");

 a.street = "345 A Street";
 Address.update(a); // update instance a

 Address.delete(a); // delete instance a
 Address.delete(new Integer(100)); // delete instance by primary key

 Address b = Address.get(new Integer(101)); // query instance by primary key

Query Definition

Query interface is the most important API of OQL. Criteria and OrderBy are two
fundamental objects in the query structure.

 OrderBy o = new OrderBy("zipCode", true); // order by zipCode, ascending
 Criteria c1 = Criterion.eq("city", "New York"); // city='New York'
 Criteria c2 = Criterion.ne("zipCode", "10020"); // zipCode != '10020'
 Criteria c3 = Criterion.or(c1, c2); // c1 OR c2
 Address[] list = Address.query(c3, o); // query

Aggregation

OQL supports basic aggregation functions like count(), sum(), avg(), min() and
max(), with criteria restrictions.

 Integer count = Address.count(c3); // count by criteria
 Integer sum = Address.sum("price", c1); // sum(price) by criteria

Entity Join

Basic table inner joins are supported by OQL.

Set C { A join B on A.fk = B.id }; // C is a result set of join of entity A and B

Internally Set is a super class of Entity, which defines all the CRUD, query and
aggregation functions.

Related Projects

There are numerous existing projects dealing with Object-Relation mapping
issues, such as Hibernate, iBatis, JDO and infamous Entity Bean. OQL actually
borrows many ideas from these mature projects. The difference lies in:

• Existing projects are released as libraries instead of its own language.

• Some projects tend to do more than simple things, such as entity state
management, caching and complicated transaction management.
Hibernate and Entity Bean is the best example.

• Though Hibernate has its own HQL language, the idea still is a mock of
SQL string, just replacing the table with Java class, and column with
object property.

• iBatis goes to another extreme which simply provides a Object to SQL
directly mapping layer.

Roadmap

There are many features that did not make it to the original design of OQL due to
time and resource limitations. In the near future, we plan to support the following
list of things:

• Outer joins

• Support operations cross multiple databases

• Declarative transaction support

• Use existing Java classes as entity definition

• Optimization for specific databases, like SQL hints

Summary

OQL provides a powerful alternative to the Object-Relation access layer. It is
pure Object-Oriented, simple to learn, database and platform generic. In addition,
since OQL abstracted many good designs from existing OR projects, which
makes it a good candidate for any new Java project which requires relational
database as persistence layer.

