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I.  Introduction 
 

Digital Signal Processing Language was created and designed for the purpose of 
providing an efficient language that can easily be compiled to make use of vector 
instructions that have been introduced in Intel’s recent instruction sets.  The language 
receives its name from the strong applicability these improvements have to many 
operations common in digital signal processing. 
 
Since the introduction of Intel’s MMX technology processor families, Intel has 
introduced four extensions into their architectures that support single-instruction 
multiple-data (SIMD).  These extensions provide a group of instructions that perform 
SIMD operations on packed integer and/or packed floating-point data elements.  
Using these instructions enhances the performance of compatible processors for a 
variety of uses, including advanced 2-D and 3-D graphics, motion video, image 
processing, speech recognition, audio synthesis, telephony, and video conferencing.1 

 
II. Brief Overview of Intel SIMD 
 

Intel first introduced SIMD with MMX, which was available on some Pentiums as 
well as Pentium II’s. MMX offered instructions for parallel operations on packed 
byte, word, or double word integers. 
 
SSE (Streaming SIMD Execution) was first introduced in Pentium III, offering 
instructions for packed single-precision floating-point values. 
 
SSE2 was introduced in the Pentium 4 and Intel Xeon processors, offering 
instructions for packed double-precision floating-point values, as well as new 
instructions for 128-bit integer operations.  
 
SSE3 was most recently introduced in the Pentium 4 supporting Hyperthreading 
(P4+HT), which further added additional instructions, some of whose utility are 
demonstrated in Section XI.  
 
DSPL will specifically target P4+HT and later architectures, in order to take full 
advantage of all SIMD instructions (MMX, SSE, SSE2, and SSE3).  

                                                
1 IA-32 Intel® Architecture Software Developer’s Manual: 
ftp://download.intel.com/design/Pentium4/manuals/25366520.pdf 



III. Vector Operations 
 

The main feature that DSPL offers is its ability to take advantage of SIMD (Single-
instruction Multiple-Data) instructions when compiled.  These instructions allow for 
the parallel execution of multiple operations that would otherwise require separate 
instructions.  The DSPL compiler uses these instructions when the language performs 
operations on arrays.  For example, if a, b, and c are arrays of type int with an 
arbitrary number of elements, in DSPL it is possible to perform the following 
operation: 
 

a = b + c; //where a[0] = b[0] + c[0], a[1] = b[1] + c[1], etc 

 
The compiler uses SIMD instructions when creating assembly code for this statement, 
such that several additions can be performed simultaneously.  In prior languages a 
for loop would be required, which would add each of the elements individually, 
resulting in many more instructions. Further, if the array sizes are known at compile 
time, it is possible to unroll the loop, further improving speed. Although this may 
seem like a rather simple improvement, in the applications noted above these 
operations are performed frequently and consequently optimization of this process 
has a dramatic overall effect. 

 
IV.  Portability 

 
A driving motivation behind DSPL is its use of all available SIMD instructions 
available on current-generation Intel processors. Therefore, DSPL has been designed 
to offer superior efficiency on modern systems (supporting SSE3), rather than worry 
about backwards compatibility with previous architectures. It is, however, 
conceivable to port the DSPL compiler to other architectures.  
 

V.  Complex Numbers 
 
As complex arithmetic is prevalent in digital signal processing, a new native type, 
complex, has been introduced, for storing two floating-point values representing the 
real and imaginary components of a complex number.  

 
VI.  Data Types 

 
As the focus of DSPL language is to increase ease and efficiency of vector 
calculations, DSPL uses a small set of data types. The data types implemented are 
int, float, complex, and string, as well as the single dimension array types 
int[], float[], and complex[]. 



VII.  Operators 
 
DSPL uses operators in very powerful ways. It implements the basic mathematical 
operators +, -, *, / (addition, subtraction, multiplication, and division), which are 
capable of operating on every data type (including single-dimension arrays) with the 
exception of string. It also introduces a strictly-array operation of convolution 
(represented by ~). The use of array operators leads to cleaner, more elegant code that 
is less prone to mistakes by the programmer and more easily optimized by the 
compiler.  
 

VIII.  Control Keywords 
 
The language supports a basic set of control characters needed for manipulating sets 
of data in calculations, consisting of for, while and a conditional structure if – 
else. 
 

IX.  Built-in Functions 
 
In order to provide a simple and clean way for a DSPL programmer to work with sets 
of data, the language includes the following built in functions: 
 

print  outputs data to standard output 
read    reads data from standard input 

 
 
X.  Syntax Example 

int scale;    
complex[2] inputA; //2 element complex array 
complex[2] inputB;   
complex[2] result;  
read(inputA);      //read in first 2 complex #s 
read(inputB);  //read in second 2 complex #s 
result = inputA * inputB;  
if (result[0].r <= 1) { 
 scale = 1;  
} 
else { 
 scale = 2;  
} 
result *= scale;  //multiply all values by scale 
 
print(result);  
 

The above sample program would print out the value of result, which should contain two 
complex numbers, the first representing inputA[0] * inputB[0] * scale, and the second 



equal to inputA[1] * inputB[1] * scale, where scale would be 1 if the real part of 
result[0]<=1, else 2 if the real part of result[0]>1.  



XI.  Comparison between C and DSPL 
A subsection of the DSPL program given in Section X, the multiplication of two pairs 
of complex numbers, could be equivalently coded in C as follows: 
 
typedef struct {  
  float real; 
  float imag;  
} ComplexFloat; 
  
void main() {  
  ComplexFloat multiplicand[4]; //contains four complex floats  
  ComplexFloat product[2]; //will store the product of two pairs of complex floats 
 
  multiplicand[0].real = 1.34; 
  multiplicand[0].imag = -3.7; 
  multiplicand[1].real = 0.4; 
  multiplicand[1].imag = 7.83;  
 
  multiplicand[2].real = 834; 
  multiplicand[2].imag = -8.8; 
  multiplicand[3].real = -0.4; 
  multiplicand[3].imag = 7.7; 
   
  product[0].real = (multiplicand[0].real * multiplicand[1].real) - (multiplicand[0].imag * multiplicand[1].imag); 
  product[0].imag = (multiplicand[0].real * multiplicand[1].imag) + (multiplicand[0].imag * multiplicand[1].real);  
   
  product[1].real = (multiplicand[2].real * multiplicand[3].real) - (multiplicand[2].imag * multiplicand[3].imag); 
  product[1].imag = (multiplicand[2].real * multiplicand[3].imag) + (multiplicand[2].imag * multiplicand[3].real);  
} 



Compiling the above program with gcc 3.4.4 yields the following x86 assembly for 
the actual floating point multiplications:  
 
 flds -40(%ebp)  #load multiplicand[0].real 
 fmuls -32(%ebp)  #multiply multiplicand[0].real * multiplicand[1].real 
 flds -36(%ebp)  #load multiplicand[0].imag 
 fmuls -28(%ebp)  #multipliy multiplicand[0].imag * multiplicand[1].imag  
 fsubrp %st, %st(1)  #subtract from first multplication the second 
 fstps -56(%ebp)  #store the real for the first complex result 
 flds -40(%ebp)  #load and calculate imag for the first complex result 
 fmuls -28(%ebp) 
 flds -36(%ebp) 
 fmuls -32(%ebp) 
 faddp %st, %st(1) 
 fstps -52(%ebp)  #store the imag for the first complex result 
 flds -24(%ebp)  #load and calculate the real for the second complex result 
 fmuls -16(%ebp) 
 flds -20(%ebp) 
 fmuls -12(%ebp) 
 fsubrp %st, %st(1) 
 fstps -48(%ebp)  #store the real for the second complex result 
 flds -24(%ebp)  #load and calculate the imag for the second complex result 
 fmuls -12(%ebp) 
 flds -20(%ebp) 
 fmuls -16(%ebp) 
 faddp %st, %st(1) 
 fstps -44(%ebp)  #store the imag for the second complex result 
 
The equivalent functionality, taking advantage of Intel’s SSE3 introduced in the 
Pentium4+HT platform is as follows2:  

 
movsldup xmm0, [eax]   ; multiplier real (a1, a1, a0, a0) 
movaps xmm1, [ebx]   ; multiplicand (d1, c1, d0, c0) 
mulps xmm0, xmm1  ; temp1 (a1d1, a1c1, a0d0, a0c0) 
shufps xmm1, xmm1, 0xB1 ; shuf multiplicand(c1, d1, c0, d0) 
movshdup xmm2, [eax]   ; multiplier imag (b1, b1, b0, b0) 
mulps xmm2, xmm1   ; temp2 (b1c1, b1d1, b0c0, b0d0) 
addsubps xmm0, xmm2   ; b1c1+a1d1, a1c1-b1d1, a0d0+b0d0, a0c0-b0c0 
movaps [edx], xmm0   ; store the results (y1,x1,y0,x0) 

 
Note that the gcc-generated assembly is shown using AT&T assembly syntax, where operands are 
reversed from those in the Intel style assembly format directly above.  
 
This simple example demonstrates the extreme reduction in the number of 
instructions that need to be executed to perform equivalent functionality, in this case 
the multiplication of two pairs of complex numbers.  
 

                                                
2 Using SSE3 Technology in Algorithms with Complex Arithmetic: 
http://www.intel.com/cd/ids/developer/asmo-na/eng/66717.htm 


