
Board Game Generation Language

A Brief Introduction

 Overview of BGGL
 BGGL Language Highlights
 Implementing Tic-Tac-Toe with BGGL
 Summary

Matt Chu
Steve Moncada
Vitaliy Shchupak

Hrishikesh Tapaswi



BGGL Overview: Goals

 Capture the essential components of a 
board game to assist game coders

 Specialize these components to provide 
the programmer with a rich code palette

 Eliminate tedious error-checking
 Create an environment for the invention 

of new board games



BGGL Overview: Strengths

 Versatile board game data types 
integrated with conventional 
programming language constructs

 Built-in language features tailored 
specifically for board games

 Flexible, robust rule specification syntax



BGGL Overview: Weaknesses

 Domain-specificity restricts applicability 
to other computational domains

 Extensive syntax steepens the learning 
curve for even the most basic 
functionality in BGGL

 No extensibility support



BGGL Highlights: Board 

 Global variable 
with convenient 
manipulation 
functions

board = <[W, B, W]

[B, W, B]
[W, B, W]>;

 /* specifies 
the following 
board:

  0 1 2
0 W B W
1 B W B
2 W B W
*/



BGGL Highlights: Rules

 Rules in BGGL act 
like functions

 Pieces accepted as 
targets

 Composed of        
4-tuple custom 
constraint syntax

rule pawn_capture(): BP, WP

{

return test 1, diag, false, 
false;

}

/* 

specifies rule for pawn capture on 
black, white pawns:

length: 1, (how far can it move?) 

direction: diag, (how can it move?)

jump: false, (hops another piece?)

emptysquare: false (lands on empty?) 

*/



BGGL Highlights: Move

 Moves interface 
with Pieces and 
the Board via        
4- or 6- tuples

piece G;

move m = :^:G:0:0:1:1;

/*

G _ _ _ _ _

_ _ _  moves to _ G _

_ _ _ _ _ _

move syntax = : <movetype> : 
<piece> : <row_source> : 
<col_source> : <row_target> : 
<col_target>;

*/



BGGL Tutorial: Tic-Tac-Toe
Critical Code: Game Rule Declarations

rule no_overwrite(): X, O { 
return test , , , true; // the only special constraint is that the destination

  // square should be empty
}

func getpiece(player p) returns piece {
       if (p == p1) { return X; } else { return O;}
}

func getwinner() returns player {
       int i;
       player winner;
       for (i = 0 to 2) {
               if ( <_i> == [X,X,X] || <|i> == [X,X,X] || 

</0> == [X,X,X] || <\0> == [X,X,X]) {
               winner = p1;
               } else {
                       if ( <_i> == [O,O,O] || <|i> == [O,O,O] ||
                             </0> == [O,O,O] || <\0> == [O,O,O]) {
                       winner = p2;
                       }
               }
       }
       return winner;
}



BGGL Tutorial: Tic-Tac-Toe
Critical Code: Game Block 1/2

game {
       board =
       <[_,_,_]
        [_,_,_]
        [_,_,_]>; //empty tic tac toe board stored in global variable

       boolean done = false;
       player thisplayer = p1;
       int row; int col;
       piece currpiece;
       print board;
       int countmoves=0;
       

while (!done) {
       

print "Player " + thisplayer + ": " + getpiece(thisplayer);
           row = input "Enter row coordinate: ", int;
           col = input "Enter col coordinate: ", int;

           currpiece = getpiece(thisplayer);
            move m = :+:currpiece:row:col;



BGGL Tutorial: Tic-Tac-Toe
       if (no_overwrite():m) {
               apply m;
                if (thisplayer == p1) {
                 thisplayer = p2;
                 } else {
                   thisplayer = p1;
                 } countmoves = countmoves + 1;
               }
               else { print "Invalid coordinate"; }
               print board;

               player winner = getwinner();
               if (winner == p1 || winner == p2) {
                       print "" + winner + " won!";
                       done = true;
               }
               else {
                       if (countmoves == 9) {
                               print "It's a draw!";
                               done = true;
                       }
               }
       }
}

Critical Code: Game Block 2/2



BGGL Conclusion: Framework

Lexer

Exception Handler

Parser

input_file.bggl
Console OutputFront-end

Back-end

AST Walker
Semantic Analysis

Console Input

Test Execution

Symbol Table

Type System

Interpreter

Collection 
of 

Test Inputs

Test Framework



BGGL Conclusion: Wishlist

 The implementation of turn{ } blocks as a 
specialized control flow mechanism

 Additional attention to usability via 
condensed syntax and semantics

 Better support for non-domain-specific 
tasks



BGGL Conclusion: Take-aways

The next time we build a programming 
language, we'll...

 Utilize similar directory organization, 
version control, and testing processes

 Emphasize the importance of initial 
planning by spending very late nights 
early in the process, not just at the end


