d Garre' Generation Language

',_A Brief Introduction

* Overview of BGGL
* BGGL Language Highlights
* Implementing Tic-Tac-Toe with BGGL

* Summary

Maftt Chu

Steve Moncada
Vitaliy Shchupak
Hrishikesh Tapaswi

r

GGL Overview: Goals
r

 Capture the essential components of a

r}_board game to assist game coders

Specialize these components to provide
the programmer with a rich code palette

* Eliminate tedious error-checking

* Create an environment for the invention
of new board games

r

GL Overview: Strengths

* Versatile board game data types
integrated with conventional
\ programming language constructs

% Built-in language features tailored
specifically for board games

* Flexible, robust rule specification syntax

r

L Qverview: Weaknesses

|

* Domain-specificity restricts applicability

fip other computational domains

* Extensive syntax steepens the learning
curve for even the most basic
functionality in BGGL

* No extensibility support

able
venient
ulation
ctions

board

N B O

hlights: Board

= <[W, B, W]
[B, W, B]
[W, B, W]>;
/* specifies
the following
board:

012

WBW

BWRB

WBW

GGL|

* Rul
li

n BGGL act
functions

leces accepted as

targets
r

T Composed of
4-tuple custom
constraint syntax

ighlights: Rules

rule pawn capture(): BP, WP

{

return test 1, diag, false,
false;

}
/*

specifies rule for pawn capture on
black, white pawns:

length: 1, (how far can it move?)
direction: diag, (how can it move?)
jump: false, (hops another piece?)
emptysquare: false (lands on empty?)

*/

GGL

hlights: Move

piece G;

move m = :*:G:0:0:1:1;

/ *
G—— — o —

_ _ _ moves to G _

move syntax = : <movetype> :

<piece> : <row_source> :

<col_source> : <row_target> :

<col_ target>;

*/

player
for (1

}

return

ule no overwr
return tes

1al: Tic-Tac-Toe

Code: Game Rule Declarations

// the only special constraint is that the destination
. // square should be empty

yer p) returns piece ({
1) { return X; } else { return O;}

A

Lketurns player {

winner;
=0 to 2) {
if (< i> = [X,X,X] || <|i> = [X,X,X] ||
</0> == [X,X,X] || <\0O> == [X,X,X]) {
winner = pl;
} else {
sjeefSI < i> == [0,0,0] || <|i> == [0,0,0] ||
</0> == [0,0,0] || <\O> == [0,0,0]) {
winner = p2;
}
}
winner;

cal Code: Game Block 1/2

empty tic tac toe board stored in global variable

‘done = false;
isplayer = pl;
~ int col;
rrpieces;
‘board;

int countmoves=0;

while (!done) {
print "Player " + thisplayer + ": " + getpiece(thisplayer);
row = input "Enter row coordinate: ", int;

col = input "Enter col coordinate: ", int;

currpiece = getpiece(thisplayer);
move m = :+:currpiece:row:col;

1al: Tic-Tac-Toe

al: Tic-Tac-Toe
cal Code: Game Block 2/2

thisplayer = pl;
} countmoves = countmoves + 1;

se { print "Invalid coordinate"; }
_ lint board;

player winner = getwinner();
if (winner == pl || winner == p2) {
print "" + winner + " won!";
done = true;
}
else {
if (countmoves == 9) {
print "It's a draw!";
done = true;

Front-end

Ision: Framework

il
L

Back-end

_festExecuiion |

Test Framework

r

GL Conclusion: Wishlist

w

* The implementation of turn{ } blocks as a

rgpecialized control flow mechanism

- Additional attention to usability via
condensed syntax and semantics

* Better support for non-domain-specific
tasks

r

L Conclusion: Take-aways

r

The next time we build a programming

f_language, we'll...

« Utilize similar directory organization,
version control, and testing processes

* Emphasize the importance of initial
planning by spending very late nights
early in the process, not just at the end

