
ACL: Automated Command Line
Language Reference Manual

Cheow Lip Goh (Paul)
UNI: clg2111
Email: cheowlipgoh@gmail.com

1. Introduction

ACL is created to make it very easy to do repetitive and tedious tasks on the
command line. The syntax is very similar to the widely used C/Java, making it a
very easy language to pick up by most people. The ACL interpreter is based on
java and has a good potential to be used on different platforms.

2. Lexical Conventions

ACL has 5 kinds of tokens: identifiers, keywords, constants, expression
operators, and other separators. Blanks, tabs, newlines and comments are
ignored unless they serve to separate tokens.

2.1 Comments

The first style of comments starts with /* and terminates with */. The seconds
style starts with // and terminates with end of line.

2.2 Identifiers

An identifier is a series of letters and digits. The first character of an identifier
must be a letter, followed by any number of letters or digits or underscore. Upper
and lower case letters are distinct.

2.3 Keywords

The following table lists all the keywords in ACL. Keywords are reserved
identifiers and should not be used for any other purpose:

session receive send if
else while for function
return break continue

2.4 Constants

There are only two kinds of constants in ACL, namely Integer and String.

2.4.1 Integer Constants

An integer constant is a sequence of digits.

2.4.2 String Constants

A string constant is a sequence of characters surrounded by double quotes “.
The forward slash followed by a double quote \” is used to represent a double
quote within the string.

2.5 Other Tokens

() { } ; ,
+ - * / ++ --
> < >= <= == =

3.0 Expressions

3.1 Primary Expressions

Primary expressions include identifiers, constants, parenthesized expressions
and function calls.

3.1.1 Identifiers

An identifier could be an lvalue expression or rvalue expression. An rvalue
expression will be evaluated.

3.1.2 Constants

A constant’s value determines its type (i.e., Integer or String). A constant can
only be an rvalue.

3.1.3 Parenthesized Expressions

Parenthesized expressions’ type and value are identical to the unparenthesized
expressions.

3.1.4 Function Calls

Function calls consist of a function identifier followed by a parenthesized list of
arguments to the function. Each argument is an expression. The function call
itself is an rvalue expression.

3.2 Arithmetic Expressions

Arithmetic expressions take primary expressions as operands and evaluate those
using operators.

3.2.1 Binary Operators

Binary arithmetic operators include +, -, *, /. They indicate addition, subtraction,
multiplication and division. Binary operators can only operate on Integer
constants operands. Multiplication and division operators have a higher
precedence than addition and subtraction operators. When the precedence of the
operators are the same, i.e., addition and subtraction, the associatively is from
left to right.

3.3 Relational Expressions

Relational operators >, <, >=, <=, !=, == are binary relational operator
representing whether the first operand is greater than, lesser than, greater than
or equal, lesser than or equal, not equal and equal to the second operand. These
operators evaluate to 0 if true and 1 if false.

3.4 Assignment Expressions

The assignment operator is =. The assignment expression consist of an lvalue to
the left of the assignment operator, and an rvalue to the right of the assignment
operator. The lvalue must be a modifiable identifier. The rvalue can be any
identifier or constant.

4.0 Statements

Except as indicated, statements execute in sequence.

4.1 Expression Statement

Most statements are expression statements, which have the form:

 expression ;

Expressions statements are usually assignments or function calls.

4.2 Compound Statement

Compound statement is a group of statements surrounded by open and close
braces. It is used when a group of statements is needed in place of a single
statement.

4.3 Conditional Statement

The two forms of condition statements are:

If (expression) then statement
If (expression) then statement else statement

In the first form, the first substatement is executed if the expression evaluates to
a non-zero. In the second form, the second substatement is executed if the
expression evaluates to zero. The else ambiguity is resolved by connecting the
else to the last encountered elseless if.

4.4 While Statement

The while statement has the form:

while (expression) statement

As long as the value of the expression remains non-zero, the substatement is
executed repeatedly

4.5 For Statement

The for statement has the form:

for (expression-1 ; expression-2 ; expression-3) statement

expression-1 specifies the initialization for the loop.
expression-2 specifies the test to perform such that as long as the expression-2
evaluations to non-zero, the for loop will continue to run.
expression-3 specifies the incrementation made after the end of each loop
iteration.

4.6 Break Statement

The break statement has the following form:

break ;

If executed, the break statement will cause the termination of the smallest
enclosing while or for statement. Execution control will pass on to the statement
following the terminated statement.

4.7 Continue statement

The continue statement has the following form:

continue ;

If executed, the continue statement will pass control to the loop continuation
portion of the smallest enclosing while or for statement.

4.8 Return statement

The return statement two forms:

return ;
return expression ;

The return statement is always used within a function. The first form of return
statement returns no value. The second form of the return statement will return
the value of the expression to the function caller.

5.0 Function Definition

A function definition has the following form:

function function-name (argument-list) {
 statement
}

function-name is the name of the function. argument-list is a comma separated
list of arguments to be passed into the function. argument-list could be empty.
The return statement is optional and could be used when the function needs to
return, with or without a value.

6.0 Built-in Functions

ACL has 3 built in functions, namely session, receive and send. These 3
functions are the key to automatically interacting with the command line locally or
remotely.

6.1 session function

The session function, when invoked, will spawn a local or remote command line
session, depending on the shell program used to spawn the session (i.e., telnet,
ssh, etc). The session function is invoked just like a regular function and takes an
identifier or a string constant. If an identifier is used, the identifier must evaluate
to a string.

6.2 receive function

The receive function’s invocation is only meaningful after the session function is
called. The receive function will wait for a certain sequence of characters to be
sent back by the spawned session to determine if there is a match. The receive
function is invoked just like a regular function and takes an identifier or a string
constant. If an identifier is used, the identifier must evaluate to a string. The
default timeout for the receive function’s wait is 30 seconds. This value could be
changed by the timeout function described later. If a timeout happens during
receive, a timeout error will be printed on the screen.

6.3 send function

The send function’s invocation is only meaningful after the session function is
called. The send function will send a certain sequence of character to the
spawned session. The send function is invoked just like a regular function and
takes an identifier or a string constant. If an identifier is used, the identifier must
evaluate to a string.

6.4 timeout function

The timeout function is used to set the timeout for the receive function. The
timeout function is invoked just like a regular function and takes an identifier or
an integer constant. If an identifier is used, the identifier must evaluate to an
integer.

