

MAZE

A SIMPLE GPU WITH EMBEDDED VIDEO

GAME

Designed by:
Joseph Liang cjl2104@columbia.edu
Joe Zhang xz2025@columbia.edu
Wei-Chung Hsu wh2138@cs.columbia.edu
David Lau dsl2012@columbia.edu

2

1. INTRODUCTION
Our goal is to design a simple GPU processor that could handle 2D line

drawing function to implement a MAZE game. The user will be able to control
a graphical object to traverse through a generated maze using the keyboard.

There are 3 parts of our project, (1) hardware functions, (2)
firmware/driver/API functions, and (3) software game logic. For our hardware,
we will utilize the UART to establish connection between the keyboard and the
FPGA. Within the FPGA we will implement the Brensenham’s line drawing
algorithm in VHDL, which will be translated to an API function and called by
software. We will then code up a game engine with C to run the logic, which
will produce signals to communicate with the external Toshiba 512KB SRAM
and the Texas Instrument Video D/A converter to display graphics.

2. BACKGROUND
API and Firmware, such as OpenGL [1] and DirectX [2], offers some

functions that could direct use the hardware functions. The reason of API and
Firmware is because it always writes some registers and memory space in order
to trigger the hardware function, and it is inconvenient for software
programmer directly writing these registers. In addition, some API may
combine several hardware functions to create another powerful hardware
function, for example, by calling drawing line function three times, it could get
the simple drawing triangle function.

There are several similar projects done in previous semesters, and we
consulted their design idea. The “BattleSnake” [3] and “Video Game” [4]
projects give us pretty good example in character graphics rendering, and we
may import some of their source code. The “Scorched Earth XESS” [5]
demonstrates an excellent hardware design and utilization that they efficiently
use the onboard Toshiba 256K x 16 bit SRAM.

 3

3. OVERALL ARCHITECTURE (MODIFY THIS)

4. COMPONENTS
4.1 Toshiba 256K x 16 bit SRAM

We implement our video memory into Toshiba 512KB SRAM. For each
color frame with 640x480 resolution, it takes 300KB, and this would limit us to
implement a double buffer swapping function. Therefore, we will support one
frame rendering for now. If we could figure out how to use the onboard
Samsung 8Mx16 SDRAM, we maybe support swapping function in the future.
The data buffer has read&write feature, therefore, it could load the game
graphics data in the game loading time. As what the Lab6 did, we will directly
import the Lab6 source code.

4

Figure 1: This is our SRAM usage

4.2 Texas Instruments video D/A converter

This chip is used to video out, as the lecture and lab5 source code did. We
will directly import lecture and lab source code to use this peripheral.

5. HARDWARE ALGORITHMS
3.1 Bresenham’s Line Algorithm

We want to implement a hardware drawing line function. The following is
Bresenham’s Line Algorithm pseudo code [6]:

functionfunctionfunctionfunction line(x0, x1, y0, y1)

 boolean steep := abs(y1 - y0) > abs(x1 - x0)
 ifififif steep thenthenthenthen

 swap(x0, y0)

 swap(x1, y1)

 ifififif x0 > x1 thenthenthenthen

 swap(x0, x1)

 swap(y0, y1)

 int deltax := x1 - x0
 int deltay := abs(y1 - y0)
 int error := 0

 5

 int y := y0
 ifififif y0 < y1 thenthenthenthen ystep := 1 elseelseelseelse ystep := -1

 forforforfor x fromfromfromfrom x0 totototo x1

 ifififif steep thenthenthenthen plot(y,x) elseelseelseelse plot(x,y)

 error := error + deltay

 ifififif 2×error ≥ deltax

 y := y + ystep

 error := error - deltax

The following block diagram is for the Bersenham’s Algorithm:

6

6. SOFTWARE ALGORITHMS
6.1 Maze Generation

We will implement a random maze generator. Each time, the program will
generate a random 50x50 maze. The way this is done is to start with all blocks
in the 50x50 matrix in separate disjoint sets. Then, we randomly remove walls
until all the blocks are in the same joint set. Each maze will have only one path
from the starting block to the ending block.

6.1 User Interface

We allow the user to start at the starting point, and then he can use the
arrows to control the direction in which he moves. A square represents the user.
When the square reaches a pre-defined block, the program will detect a
successful path out of the maze and it terminates.

7. FALLBACK PLAN & ALTERNATIVES
7.1 Fallback Plan

The backup plan is to simply generate a 50x50 maze, without letting the
user to play.

7.1 Alternatives

We might also add color to our maze program using the Flood Fill
Algorithm if time allows.

REFERENCES

[1] OpenGL: The Industry’s Foundation for High Performance Graphics,

http://www.opengl.org

[2] DirectX: provides a standard development platform for Windows-based PCs by

enabling software developers to access specialized hardware features without having to

write hardware-specific code, http://www.microsoft.com/windows/directx/default.aspx

[3] Ming-Ju Wu, Way-Cheng Sun. BattleSnake. In Embedded System Design Summer

2005.

[4] Dagna Harasim , Charles Finkel, David Soofian,, Ke Xu , Eric Li, Winston Chao.

Video Game. In CSEE 4840 Embedded System Design 2004.

 7

[5] Michael Sumulong, Jeremy Chou, Dennis Chua. Scorched Earf XESS. In CSEE 4840

Embedded System Design Spring 2005.

[6] Bresenham's line algorithm - Wikipedia, the free encyclopedia,

http://en.wikipedia.org/wiki/Bresenham's_line_algorithm

[7] Foley, Van Dam, Feiner, Hughes, Phillips. Introduction to Computer Graphics.

