
������������

��												

������������������������

������������

��

������������������������

��

������������

Gregory M. Baumgardner
gmb2108@columbia.edu
COMS W4115 Fall 2005

Prof. Stephen Edwards
February 8, 2005

 The hawkx Programming Language 1.0
 Page 2 of 7

1 Introduction

1.1 Overview
The hawkx programming language is designed to parse and manipulate simple textual
data, and build up an XML representation of the data. First, by offering awk-like features
and constructs, this new language uses pattern matching on the text, splits input lines into
separate fields, and offers a wide array of functions that can manipulate the data in the
fields. Likewise, the text can be built into an XML data structure using the W3C
standard XPath syntax.

1.2 Background
The simple text file has been embedded in configuration files and logs since the early
computers. In particular, the UNIX operating system and its variants almost exclusively
use simple text format files to setup up everything from user and preference information
to network and security configurations. Likewise, many applications running on the
operating system might persist certain data or write log files in readable text. In almost
all of these cases, the so-called “ flat-file” was well-formed. That is, the structure of the
file was fixed and had well understood meaning. It was this fact that led to the
development of a general purpose parsing tool for text files, simply known as awk.

Named for its creators – AT&T Bell Lab’s Alfred V. Aho, Peter J. Weinberger, and Brian
W. Kernighan – awk quickly gained popularity for its power and ease of use. The tool
automatically parses input line by line, and allows the programmer to selectively alter in
various ways. Over the years, numerous systems programmers found it more than
convenient to develop awk scripts to extract or modify data from all sorts of UNIX
configuration files. Even today, awk is usually language of choice to quickly parse and
manipulate formatted text files.

With the advent of the world wide web, markup languages such as HTML (Hypertext
markup language) and its later, more general cousin XML (Extensible Markup Language)
began to dominate the text formatting for computer files. Fortunately, standards bodies
such as the W3C (World Wide Web Consortium) designed many aspects of theses
languages to enable more productive tools for file manipulation and application data
exchange. The Xpath notation provides a rudimentary description of generic locations
within an XML document. XML Schemas and Document Type Definitions (DTD)
provide a couple of optional languages for describing the meaning of the markup tags
within an XML document. The XML Style Sheet Language Transforms (XSLT) is a
W3C language recommendation that enables conversions from one XML grammar to
another. The Document Object Model (DOM) is a powerful object data structure
representation of XML files that allow for computing differences between files. Simple
Object Access Protocol (SOAP) provides a channel to transfer objects between
applications in a textual XML representation. There are many other examples.

 The hawkx Programming Language 1.0
 Page 3 of 7

It appears clear that the markup languages, particularly XML, present a powerful yet
comprehensible framework for textual manipulation. However, since there still exists a
significant presence of regular flat files on every computer system, there appears to be a
need for some language that can help quickly markup text files in order to be able to
better perform the complicated tasks that are natural to XML documents. This new
language is known as hawkx, a cross between the ever popular awk language for text
parsing and Xpath notation for building the XML document.

1.3 Motivation
The hawkx language is designed to solve a fundamental problem with text file
manipulation. Although simple programs in awk or similar languages exist for changing
contents in a file or appending new data, it has proven extremely difficult to merge
similar content from two or more files. For example, suppose a system administrator was
consolidating two old servers into a single advanced system. Each old server hosted
hundreds of user groups with dozens of users in each. Some of the groups may overlap,
and some of the users may overlap between the two old servers. The task for the
administrator is to merge all the thousands of users and hundreds of groups onto the new
machine. Appropriately handling the duplicates clearly is a daunting task for a script to
manage. Even more complicated may be that user group listings have some known
character limit within the text file that requires entries to be split into more than one line.
This kind of problem demonstrates the motivation behind the hawkx programming
language. Instead of creating a complicated script with all the logic necessary for
merging the user and group files, the system administrator defers those functions to a
higher level language with a more sophisticated utility set such as Java. Instead, the
scripting required is solely to provide useful input into the Java code. Clearly, using
XML files would allow the programmer to merge the content of those files quickly and
effectively, and perhaps an XSL transform can be used to write out the resultant merged
XML file back to the UNIX configuration file format. Therefore, it is the primary
objective of hawkx to provide a language that can naturally parse the text files and
construct an XML representation with little effort.

1.4 Goals

Document Construction
The primary goal of hawkx is quick and natural XML document construction. The
syntax is designed to be a flat, directory-like structure for the document being
constructed. File pointer references are used to track the current location within the
document, and data may be pushed into or pulled from a location relative to a file pointer,
or from the absolute root of the document. The markup tags within the XML document
are created by simply stating their location along the path. No intermediate data
structures are required.

 The hawkx Programming Language 1.0
 Page 4 of 7

Automatic Parsing
Following in the footsteps of awk, this new language will read input files one line at a
time, and will parse each into field, accessible through positional parameters. The default
white space field separators may be overridden in order to configure the parser to
recognize different formats of input lines. The developer may also reset the positional
parameters within the program.

Portability
Even though flat text files are prominent on UNIX systems, they exist on all platforms.
Thus, the hawkx interpreter should be portable to any system. Most importantly, a
program that runs on one platform should generally run the same on another. This does
not necessarily, however, take into account the uniqueness of a specific file or operating
system intentionally exploited by the programmer.

Error Handling
An important goal of the language is to detect or prevent errors in the XML document.
First, the interpreter is obligated to produce well-formed XML, per the XML 1.0
standards. There shall be no direct manipulation of the elements or attributes allowed
that would jeopardize this guarantee. Secondly, all encoding shall be UTF-8 to reduce
the possibility of invalid characters being passed into the document. Finally, the
programmer may optionally supply a data definition in the form of XML schema or
Document Type Definition (DTD). If supplied, the XML document shall conform to
language defined, or a run-time error will occur. The intent here is to better ensure that
the document constructed will be accepted by any higher level application written to
manipulate the input.

1.5 Features

Simple Data Types
Since the XML document exclusively contains textual strings, the string is the primary
data type in hawkx. All simple variables are of string type, although strings containing
only digits may be accessed as a numerical value within an expression. Literal strings
should be enclosed in double quotes (“”) with standard XML entity encoding for special
characters. The only complex data type allowed are document node pointers, which
tracks the path along the XML document. Because an XML document represents a
complex data structure, it can serve as pseudo-array data structures, but unless the data is
meant to be saved in the document, it needs to be removed after use. No variable ever
needs declared in the program. Instead, the type is determined by the way it is accessed,
with the dollar sign ($) for string expansion and ampersand (&) for document position
dereferencing. Finally, logical expression evaluate to boolean types which apply to some
language constructs, but can also be used as a string.

 The hawkx Programming Language 1.0
 Page 5 of 7

Variables
All variables in a hawkx program are considered global. This is in order to maintain the
state of a variable throughout each iteration over the input. Obviously, a variable can be
reset at any point within each iteration, which effectively behaves like a local variable.
Several special variables exist in the language. The positional parameters ($1, $2, ...
$NF) represent the fields parsed automatically by the interpreter or through a re-split
function. The $NR variable is the ordinal number of current record from the start of the
input. The &CONTEXT variable represents the default document reference. Variables
can be set through the assignment operator (=).

Arithmetic Operations
When used within expressions, strings containing numerical values also support
arithmetic operations including addition (+), subtraction (-), multiplication (*), division
(/) and modulus (%). These operations are done with double floating point precision.
Comparison operations include equal to (==) , not equal to (!=), greater than (>), less than
(<), greater than or equal to (>=) and less than or equal to (<=). Each evaluate to a
boolean.

Pattern Matching
Any string type in hawkx can be compared to a pattern enclosed in pipes (||) using the
matching (~) or not matching (!~) operators. The result is a boolean type to be used in
logical expressions. Some regular expressions are supported in the pattern.

Built-in Functions
Several functions are predefined for use in the language. These include all of the
standard XPath functions, including those that accept or return a document position.
Additionally, the resplit() function accesses the automatic parser to reset the positional
parameters.

XML Document Construction
The XML document is constructed by accessing path from document node pointer. This
is done through the dereferencing operator (->), which is assumed when not explicitly
using the &CONTEXT variable. Full XPath notation is supported for describing the
document path, including both the full and abbreviated syntax. Textual data may be
pushed into the document path with the insertion operator (<<), and can be pulled out
from the document under construction with the extraction operator (>>). The latter
operation is necessary to assign data stored in the XML document to some string
variable.

 The hawkx Programming Language 1.0
 Page 6 of 7

XML Schema/DTD Support
The hawkx language automatically generates well-formed XML, but can also be
configured to validate the document structure against a known XML schema or
Document Type Definition (DTD). Any nonconformance will generate a fatal error in
the program.

1.6 Sample

Comment s begi n wi t h a pound si gn
and go t o t he end of t he l i ne

Thi s pr ogr am bui l ds an XML f r om / et c/ passwd

i f ($1 ~ | ^#|) t hen { next } # Ski p comment s
r espl i t (| : | , $0) # Spl i t t he col on- separ at e l i ne

&/ passwd/ user <<= $1 # Push f i r st f i el d i nt o user node under / passwd
 # Move t he poi nt er t o t he newl y cr eat ed node

&r ef = &CONTEXT # Save of f a r ef er ence t o cont ext node l ocat i on

&at t r i but e: : ui d << $3 # Cr eat e an at t r i but e i n t he cur r ent node
 # Rel at i ve pat h i s assumed f r om &CONTEXT- >
 # Do not move t he cont ext node poi nt er

$comment = $5 # Save of f t he t ext f or l at er use

&r ef - >home << $6 # Rel at i ve pat h f r om r ef er ence var i abl e
&r ef - >shel l << $7 # Do not move t he r ef poi nt er

r espl i t (| , | , $comment) # Br eak apar t comment f i el d by commas
&r ef - >name/ l ast << $1
&r ef - >name/ f i r st << $2

i f ($3 ! ~ | ^$|) t hen { &r ef - >of f i ce/ r oom << $3 }
i f ($4 ! ~ | ^$|) t hen { &r ef - >of f i ce/ phone << $4 }

END { # Run af t er al l l i nes have been pr ocessed
 $user count = count (&/ user) # Count t he number of user s
 &/ [1] << comment (“ Ther e ar e “ + $user count + “ user s”) # Cr eat e an
 # XML comment
}

When this program is run against the following /etc/passwd example:

Sampl e / et c/ passwd f i l e
j ohndoe: x: 345: 10: Doe, John, Room 405, x2765: / home/ j ohndoe: / bi n/ ksh
noname: x: 346: 10: Noname, Mr . : / usr / home/ noname: / bi n/ bash

It produces the XML document:

 The hawkx Programming Language 1.0
 Page 7 of 7

��������	
��
��������
����
��������������

�����There are 2 users �����
���

����

�
�	� ����������
 �������	
�

�!��������	�������	�"!������
�
!�����
�������"
!������

�
�����
 ����
#���	�"��
#���
 ��$�	
#������"$�	
#���

�"
�����
��$$�����
 ��	��������
����"	������
 ���!�
��������"�!�
����

�"�$$�����
�"
�	��

�
�	� ����������
 ������	
�
�!�������	�����	������	�"!������

�
!�����
���
����"
!������
�
�����
 ����
#������	�"��
#���
 ��$�	
#�����"$�	
#���

�"
�����
�"
�	��

�"��

����

1.7 Summary
With the aid of hawkx, simple text files can be marked up with a valid XML grammar.
Instead of filling the language with a bunch of bells and whistles that allow for complex
data structures to be built or powerful calculations to execute efficiently, this simple
language is built solely for the purpose of processing strings and using them to build
XML documents. The document path syntax follows that of the W3C XPath
specification in order to ease the XML construction. Blending the capabilities which
made the awk language popular with the flexible nature of XML, the hawkx language is
sure to become the bridge between legacy text and enhanced document markup.

