
An Imperative Asynchronous Language for Kahn
Semantics in the spirit of Balsa/Tangram

COMS 4115 Whitepaper - February 2005

Clive John Chuan
clive@chez.com

Jane Sui-Tit-Tong
jane sui@yahoo.co.uk

ABSTRACT
This whitepaper gives an overview of the definition of a high-
level asynchronous language and the implementation of the
compiler for defining the handshake paradigm for concurrent
processes.

1. INTRODUCTION
The hardware design world is dominated by the use of a

global clock to synchronize components in an integrated cir-
cuit. Demand for low power portable devices has renewed
interest in clockless chip design, since the increasingly fast
clocks tend to dissipate more heat and the distribution of
the clock to all parts of the circuit becomes more difficult.
Asynchronous design instead relies on handshaking between
components as the means of communication between compo-
nents. This handshaking paradigm can be likewise be used
for concurrent processes. The various applications of this
paradigm could span from parallel computing to embedded
systems, where there is a strong relationship between soft-
ware and hardware.

2. RELATED WORK
The current project is based on the use of asynchronous

hardware systems. Hardware systems have been predomi-
nently been relying on a single system clock which serves
to define when the different components communicate with
each other. With processor speed increasing ever more, it is
becoming increasingly difficult to synchronize all the com-
ponents and ensure the accuracy of the propagation of the
clock across the chip layout. Some hardware researchers
have therefore been working on systems which do not rely
on a clock, but instead communicate asynchronously. The
Tangram research project at Philips has created a language
and tools to compile Tangram procedures into VLSI circuits
using the handshake components as the communication links
between components. The Balsa project from the Univer-
sity of Manchester has also created a Tangram-like language
definition, Balsa. The current project will closely follow the
Balsa language, in particular the handshaking between com-
ponents and map these to concurrent software processes.

3. GOALS
The main goal of this project is to define a simple lan-

guage for imperative asynchronous language, derived from
the Balsa hardware description language. We also create a
compiler for this language, which would take as input the
procedures defining concurrent processes and the communi-
cation patterns between them. The output of the compiler
would be Java code that would implement the underlying

concurrency classes and provide the handshaking in Java in
a transparent way to the user.

4. HANDSHAKE COMPONENTS
Handshake components are components that are connected

by handshake communicating channels. The handshake cir-
cuits were introduced by van Berkel [6] as a representation
for asynchronous circuits in the Tangram hardware descrip-
tion language. Each handshake channel connects a passive
and an active port of 2 handshake components.

We define a handshake to be a pair of request from one
component and an acknowledgement from the other com-
ponent. An active port is the port that initiates a request
and a passive port is on the receiving end of the channel and
therefore sends back the acknowledgement. A pair of request
and acknowledgements on a handshake channel is called a
sync, by which 2 components can synchronize each other. A
handshake channel can also be used to transfer data from
one component to the other. This can be defined as Push
and Pull communications, where the direction of data flow
and the direction of the request differentiates between the 2
types of communication. Push communications exist when
the data follows the same direction as the request, i.e., ei-
ther when an active port is sending data or when the passive
port is receiving data. On the other hand, Pull communica-
tions are defined when the data is in the same direction as
the acknowledgement: an active port receives the data or a
passive port sends the data in the acknowledgement.

5. SAMPLE CODE
Below is a sample code for a single-place buffer as de-

scribed in the Balsa Tutorial [1]. This is the description of
a byte-wide single place buffer.

procedure buffer1 (input i : byte; output o : byte) is

variable x : byte

begin

loop

i -> x // putting input into variable x

; // sequential

o <- x // sending output from variable x to output

end

end

The code above puts the input channel i into the variable
x when the latter is ready to accept the data. The ; here
means that the operations have to be done sequentially. Af-
terwards, the variable x is sent to the environment via the
output channel o.
The corresponding Java code that is compiled from this in-



put would therefore implement the handshake channels into
classes and methods.

6. REFERENCES
[1] D. Edwards, A. Bardsley, L. Janin, W. Toms. Balsa:

A Tutorial Guide version V3.4.2. Jan 2005.

[2] A. Bardsley. Balsa: An Asynchronous Circuit
Synthesis System. Masters Thesis, Department of
Computer Science, The University of Manchester, 1998.

[3] A. Bardsley. Balsa: An Asynchronous Circuit
Synthesis System. PhD. Thesis, Department of
Computer Science, The University of Manchester, 1998.

[4] A. Peeters and K. van Berkel. Synchronous handshake
circuits. In Proceedings of the Seventh International
Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 86–95, Salt Lake City, Utah, Mar.
2001.

[5] K. van Berkel. Handshake Circuits: An Intermediary
Between Communicating Processes and VLSI. PhD
thesis, Eindhoven University of Technology, The
Netherlands, May 1992.

[6] K. van Berkel. Handshake Circuits: An Asynchronous
Architecture for VLSI Programming. Cambridge
University Press, 1993.

[7] K. van Berkel, J. Kessels, M. Roncken, R. Raeijs, and
F. Schalij. The VLSI-programming language Tangram
and its translation into handshake circuits. In
Proceedings of European Design Automation (EDAC),
pages 384–389, Amsterdam, The Netherlands, Feb.
1991.

[8] M. B. Josephs, S. M. Nowick, and C. H. K. van Berkel.
Modeling and design of asynchronous circuits.
Proceedings of the IEEE, 87(2):232–242, Feb. 1999.


