Programming Language and Translators
Project Proposal

Darrell Bethea
Michael G. Dougherty
Santosh Thammana
Mohit Chandru Vazirani

Our team will implement a language that enables the representation and
manipulation of polynomials. Programs in the language will be written in ASCII text,
with one language statement per line, with whitespace being used only to separate
tokens and being otherwise ignored.

It will be statically typed, having three base types: Integer numbers ("int"),
floating-point numbers ("float"), and a type representing the polynomials themselves
("poly"). The polynomial type will be represented in the language as a list of
coefficients (floating point numbers) separated by commas, with the lowest order
coefficients first. In a polynomial context, variables (which are polynomials themselves)
can be inserted into a list of coefficients and will be replaced exactly by their own
coefficients in the list. For example, if A and B are polynomial variables, and A equals
1,2,3, then "B = 6,7,A,8,9" will assign 6,7,1,2,3,8,9 to the variable B. The "let" keyword
will signify the declaration of a new variable. Variables must be assigned an initial
value when declared, thereby avoiding any risk of using uninitialized variables.
Variable names will consist of one letter and are case-insensitive.

All iteration will be done via a "loop-endloop" block that will loop infinitely, unless
a "breakloop" statement is reached. A "breakloop" statement will always shift control
immediately just beyond the end of the most deeply nested loop currently running.

Conditional statements will utilize the built-in "if" construct to test the value of
binary comparison operations on expressions. These operators ("=", "<", ">", and "!")

can be used to compare numbers to numbers and polynomials to polynomials.

Inequality operations on pairs of polynomials will rank them by their relative asymptotic
values.

Numbers support the arithmetic operations addition, subtraction, multiplication,
and division. Polynomials can only be added or subtracted from one another. They can,
however, be multiplied or divided by regular numbers.

There are two built-in operations on polynomials. First, expressions of the form

"[A:i]" can extract a specific term (in this case, the i’ order term) of the polynomial

stored in the variable A. Second, expressions of the form "|A|" will return the order of
the polynomial stored in the variable A.

Lines beginning with "//" are ignored as comments.

Many interesting algorithms can be written in the language. For example,
although polynomials cannot be multiplied amongst themselves automatically, a
program can easily implement the algorithm to perform the operation using only the
built-in language features. In addition, other algorithms that can be implemented
include polynomial evaluation at a specific point, as well as differentiation and
indefinite integration of polynomials. With the combination of polynomial evaluation
and integration, a program can perform definite integration.

The following is a sample algorithm that assigns the indefinite integral of a
polynomial A to a new polynomial B (with the constant of integration being fixed at 0):

// The variable A is an existing polynomial.

letpoly B=0
letintx =0
let floatz =0
loop
z=[Ax]/(x+ 1)
B=B,z
if (JAl = (x+ 1) {
breakloop
}
x=x+1
endloop

// The polynomial B now contains the indefinite integral of A.

