

Photogram

Programmable Photoshop® Language

Whitepaper

 Ohan Oda (oo2116@columbia.edu), Group Leader
 Neesha Subramaniam (ns2295@columbia.edu)
 Richard Ng (rjn2003@columbia.edu)
 Seikwon Kim (sk2617@columbia.edu)

mailto:oo2116@columbia.edu
mailto:ns2295@columbia.edu
mailto:rjn2003@columbia.edu
mailto:sk2617@columbia.edu

Photogram

Introduction

Adobe® Photoshop®, the professional image-editing standard and leader of the Photoshop
digital imaging line, has been the most prominent and powerful image-editing tool over the
years. Although the software is very powerful, due to its complexity and overwhelming
graphic user interface, it is difficult for the users to achieve the results they want without
being very experienced. Additionally, even though Photoshop® provides thousands of
image-editing functions such as resizing and filtering, the capabilities of image manipulation
are limited to what the software provides (e.g. the software provides Gaussian blur, motion
blur, radial blur, and smart blur for blurring operations, but the user cannot use their own
specified blurring filter). Further more, undoing or fixing previous undesired operations is a
tedious task using Photoshop®. One common occurrence is that a user performs several
different operations on an image and finds out later that the operation step 3 is undesirable
after completing operation step 10. Now he/she is forced to cancel/undo all of operations
down to step 3, and then redoing all of the steps from 4 to 10 after either fixing or eliminating
step 3. Another example of a tedious task in Photoshop® is making multiple collages
consisting of multiple images because applying the same operations on multiple images for
multiple collages is extremely repetitive. For a collage, the user is required to cut and paste
from many windows that contain images and it can easily reach the point where finding the
desired image is a chore. A repetitive task such as applying the same blurring filter on an
entire directory of images also requires the user to go through the same operation for each
image which is an inefficient time sink.

Thus, it will be very beneficial if there is a language that can perform image-editing
functionalities. The language will solve all of the existing issues on Photoshop addressed
above. It will significantly save the time of people performing tedious image editions.

Goal

Photogram, a programmable Photoshop® language, is a language that enables the user to
perform Photoshop operations using an iterative coding process. Photogram is meant to be
easy to use, portable, powerful and expandable.

1. Ease-of-use
Photogram is a clear and intuitive language which allows users to edit photos and create
animation by writing an algorithm. Like Java® or C Photogram uses a well-defined set of
basic syntaxes similar to Java® and this makes Photogram programmer-friendly.

2. Portable
Java® is a cross-platform portable language due to its own interpreter, and since Photogram
converts the user-created-program to Java code, it is also portable. You can execute the
program on any platform where Java 1.5 Virtual Machine is installed.

3. Powerful

-2-

Photogram
Photogram enables the user to edit the photo, for example sharpening, blurring, and changing
colors, with just few lines of code. This power and efficiency allows work to be more
productive as well as providing a clear outline of what was used to achieve the final result.

4. Expandable
Since Photogram is a programming language, it is a simple matter to add one’s own functions
or even import any other libraries in order to use new functions that the user needs.

Features

Our language, Photogram, will support the following features:

Syntaxes and Semantics: The syntaxes and semantics of Photogram will be very similar to
the Java® language with one exception for declaring macros, in which case C++ syntax is
used.

Functions: Photogram will support the implementation of functions with a return type and
parameters. The syntax for writing a function will be the same as the Java® language.

Importing: Photogram will support importing functions written on other .pg (Photogram
extension) files by using "#include" statement (see example under Sample Code section).

Non-Object Oriented: Photogram will NOT support implementation of classes/objects;
however, Photogram provides several built-in classes such as Image, Font, Color, Pixel, Line,
Rectangle, and Oval.

Arrays: Photogram will support arrays. The syntax for declaring an array will be the same as
the Java® language (see example under Sample Code section).

Editor: We will provide a specialized editor for Photogram, which will open new picture-
viewable windows so that users can easily find out the coordinates of the desired points in the
input images. However, a programmer can choose not to use our editor and use any other
word editors.

Image Processing: Photogram will provide some built-in image processing functions that are
difficult to implement using Photogram code.

Caption: Photogram will support the ability to create captions, drawing a string of text on the
image.

GUI Creation: Photogram will provide simple GUI creation functions which can be used to
test image processing functionalities.

-3-

Photogram

Sample Code

The following sample code generates an output image which is displayed on the top of the
cover sheet of this whitepaper:

#include “library.pg” // collection of functions written in Photogram
 // drawString(Image i, String s, Font f, int x_pos, int y_pos)
 // resize(Image i, int width, int height, bool
 reserve_aspect_ratio, int respect_to_what)
 // paste(Image dest, Image src, int x_pos, int y_pos)
#define WIDTH 0

main(){
 // Opens images from a directory
 Image [] myImages = OpenDir(“C:/dir/images/”);

 String [] captions = new String[myImages.getNumImages()];
 captions[0] = “Column”;

captions[1] = “Escalator”;
captions[2] = “Library”;

 // Calling the function collage
 Image result = collage(myImages, captions, 790, 580, 3, 1);

 // Saving the output image file
 result.saveAs(“C:/dir/result/collage.jpg”);
}

// A user defined collage function
Image collage(Image [] images, String [] captions, int width, int height, int row, int col){
 // Creating the target image.
 Image result = new Image(width, height);

 // Calculating the width and height of each image in the collage
 int x_dimension = width/col;
 int y_dimension = height/row;

 // Setting the font to be used for adding text onto the input images
 Font font = new Font(Font.ARIAL, 15, Font.EMBOSS);

 for(int i = 0, int x_pos = 10; i < images.getNumImages(); i++){
 if(i != 0) x_pos += images[i-1].getWidth();
 // Overlaying the text on each image
 drawString(images[i],captions[i], font, x_pos, images[i].getHeight() +10);

// Resizing the input image while preserving its aspect ratio with respect to width

-4-

Photogram
resize(images[i], x_dimension, 0, true, WIDTH);

// Pasting the modified input image in the target image

 if (i != 1) {
paste(result, image[i], x_dimension*(i%col), y_dimension*(i/col) + 20);

} else {
paste(result, image[i], x_dimension*(i%col) - 30, y_dimension*(i/col) + 20);

}
}
return result;

}

-5-

