
Alexei Masterov: am2268 26 Sep 2005
Natasha Shamis: ni2104 COMS W4111
Joshua Poritz: jsp2104 Prof. Edwards

ANIMO: Character Animation Language

I. Overview

A. Introduction

ANIMO is a language that is designed to control an animated character.
It will allow a programmer to compose instructions specifying a series
of body movements, enabling a character to perform a variety of motions.
ANIMO will have an easy-to-use syntax, combining numerous features
characteristic of higher-level languages with unique functions of its
own.

B. Applications

There are three major domains in which our language would likely be
employed.

a. Computer Animation

Computer animation is used very widely in the movie industry.
ANIMO may become a standard for animators and an alternative for
visual interfaces because it allows the reuse of code while
providing the flexibility by means of parameters.

b. Computer Games

Computer games and virtual environments is another domain where our
language can be used by both programmers and players. In places
like the Metaverse (http://en.wikipedia.org/wiki/Snow_Crash), users
can "learn" to dance by writing an ANIMO program and use it to
impress their friends. The creators of such environments can use
ANIMO for animating crowds by re-using the same code with
different parameters.

c. Robot Control

Finally, ANIMO can be used in a real world for operating toy
robots. It should be relatively easy to port it to allow control
for a humanoid robot that has a set of joints arranged in a
hierarchical fashion.

C. BVH File Format

The BVH file format was originally developed by Biovision, a motion
capture services company, as a way to provide motion capture data to
their customers. The name BVH stands for Biovision hierarchical data.

https://cubmail.cc.columbia.edu/horde/util/go.php?url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSnow_Crash&Horde=94884b824442efd1c9384c076565158f

It contains the hierarchical structure of joints and end effectors, the
motion capture data as a list of figure coordinates in space, and a
list of joint rotation angles over a sequence of frames.

Sample BVH file:

HIERARCHY
ROOT Hips
{
 OFFSET 0.00 0.00 0.00
 CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation
 JOINT Chest
 {
 OFFSET 0.00 5.21 0.00
 CHANNELS 3 Zrotation Xrotation Yrotation
 …
 }
}
MOTION
Frames: 2
Frame Time: 0.033333
8.03 35.01 88.36 -3.41 14.78 -164.35 13.09 40.30 -24.60 …
7.81 35.10 86.47 -3.78 12.94 -166.97 12.64 42.57 -22.34 …

The first three columns correspond to the X, Y, and Z coordinate of the
root joint position in space, and the rest of the columns define the
local rotation angle of each joint in the hierarchy along the X, Y, and
Z-axis. Joints are rigidly attached; therefore, they can only rotate,
and not move, in space.

If one rotates the joint in the hierarchy, all the joints in the
hierarchy below get rotated with it:

The “Frame time” parameter specifies the time interval between frames.
The rendering software then interpolates all the joint positions in
between frames.

So how do we make the figure move in a consistent fashion? The
hierarchy in the BVH file specifies the initial position of the figure
(k0). Then each row specifies what will happen to the figure at the
next time interval (k1, k2, …, kN). Each movement is a combination of
joint rotations. In our language, we are going to allow the user to
specify each joint rotation individually, and combine them using the
“+” sign. This operation of combining different movements is called
“blending”. By blending different joint rotations, the user can make
the figure perform arbitrary complex movements through space.

D. Compiler: Inputs and Outputs

Motion will be simulated through the use of BVH files, which contain
hierarchical information for the skeletal structure of the animated
characters. Our compiler will accept an ANIMO file and a BVH file
containing the character’s initial position, and output a new BVH file
containing a set of instructions in the form of joint movements for the
character.

II. Language Elements

A. Datatypes, Operators, Loops, and Conditionals

We’ll need conditionals such as “if” and loops such as “for”. Since
all of our data represents joint rotations, we will limit our datatypes
to doubles and have addition, subtraction, division, multiplication,
and modulus operators defined for them with standard (mathematical)
precedence.

B. Basic Commands: rotate() and move()

The most basic commands in ANIMO’s default library will be:

rotate(joint, x, y, z);

which will map nicely to the 3 columns that correspond to a given joint
rotation. To combine multiple joint rotations, the user will use the
following syntax:

rotate(joint1, x1, y1, z1)+rotate(joint2, x2, y2, z2);

and

move (x, y);

which will map to the figure’s position in space.

“rotate” and “move” comprise ANIMO’s smallest building blocks. A
programmer may combine these fundamental motions to create more complex
movements.

C. Blending

One may say that “rotate” and “move” are such primitive commands that
they provide no ostensible benefit over editing BVH files directly.
Our compiler, however, provides the capability of blending several
movements together to create fairly complex concurrent motions. These
more complex motions, in turn, may be blended to form even more
sophisticated character movements.

D. User-Defined Functions

Functions are fundamental to the purpose of our language. A function
encapsulates a series of concurrent and sequential movements into a
named block, such as kneel(), which may be called by any other function
that seeks to perform the motion with that name. A program to make a
skeleton jump, for example, may contain a main routine consisting
solely of four function calls in succession — kneel(), straighten(),
elevate(), and descend() — which results in a much more readable
program than several dozen unnamed lines specifying the same joint
transformations. Functions may take one or more parameters to control
their behavior. kneel(), for example, might take an integer value from
0 to 1 specifying how steeply the skeleton in question will kneel.

III. Examples

 A. Sample User-Defined Functions

Below is an example of a function that would move a character’s left
leg:

left_leg(..)
{

rotate(LeftHip, ..)+rotate(LeftKnee, ..)+rotate(LeftAnkle, ..)+move(..);
rotate(LeftHip, ..)+rotate(LeftKnee, ..)+rotate(LeftAnkle, ..)+move(..);
rotate(LeftHip, ..)+rotate(LeftKnee, ..)+rotate(LeftAnkle, ..)+move(..);
rotate(LeftHip, ..)+rotate(LeftKnee, ..)+rotate(LeftAnkle, ..)+move(..);

}

Or, equivalently:

left_leg(..)
{
 for (I = 0 to 4)

rotate(LeftHip, ..)+rotate(LeftKnee, ..)+rotate(LeftAnkle, ..)+move(..);
}

By blending different functions together, users may create more complex
movements:

step_right(..)
{

left_hand(..)+right_leg(..)+move(x, y);
}

step_left(..)
{

right_hand(..)+left_leg(..)+move(x, y);
}

 B. Sample Program

march()
{
 for (I = 0 to 10)

{
 if (I % 2 = 0)
 if (I % 4 = 0)

step_right(..) + wave_right();
 else

step_right(..);
 else
 step_left(..);
 }
}

REFERENCES:

[1] http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html

[2] “Design and implementation of real-time character animation library”.
Hakan Almer, Eric Erlandson.

http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html

