

COMS W4115
Programming Languages and Translators

- Language Reference Manual –

skyEM
(Seungjin Kyunghwan Yonghan Exam Maker)

Seungjin Nam sn2119@columbia.edu

Kyunghwan Kim kk2367@columbia.edu

Yonghan Kim (Group Leader) yk2081@columbia.edu

 1

mailto:sn2119@columbia.edu
mailto:kk2367@columbia.edu
mailto:yk2081@columbia.edu

Language Reference Manual

1. Lexical Conventions
1.1 Comments
Two types of comments are used in skyEM.

multi-line comments : starts with characters ‘ /* ’ and terminated by ‘ */ ’.
single line comments : starts with characters ‘ // ’ and continues until the end of
the line.

1.2 Identifiers
An identifier consists of digits, letters and underscore ‘ _ ’, and it is case sensitive.
The first character must be a letter or underscore.

1.3 Keywords
These words are reserved, therefore cannot be used as identifiers.

for if else break int

char string boolean double float

subject load ask answer choices

question print

1.4 Numbers
Numbers consist of digits and for floating point numbers, optional decimal point ‘.’
can be used. Integer numbers and floating point numbers will be distinguished.

1.5 String Literals
String literals are anything enclosed by a set of double quotes ‘ ““ ‘. To have
double quotes inside the string, put backslash ‘ \ ‘.

1.6 Characters
A characters can be a letter, number or a single symbol enclosed by a single quote
‘ ‘.

 2

1.7 Other tokens
There are a few reserved characters or pairs of characters that must be used
correctly in the language. The reserved characters and pairs are as follows.

 { } () []
 + ++ - -- * / %
 = = = <= >= < > !=

2. Types

boolean : Boolean values that can either be true or false
int : standard 32-bit integers
float : 32-bit IEEE floating format
double : 64-bit IEEE floating format
string : a string of characters
char : a single character

3. Expression

3.1 Primary Expression
Primary expressions have identifiers, constants, strings, or expressions in
parentheses.

Primary-expression: identifier
 | string
 | (expression)

A parenthesized expression is a primary expression, which returns the value of
enclosed expression. The presence of parentheses makes the precedence higher.

3.2 Arithmetic Expressions
Arithmetic Expressions take primary expressions as operands.

 3

Unary Arithmetic Operators
They are applicable to int, double, float. Unary operators ‘ + ‘ and ‘-‘ can be
pre-fixed to an expression. The ‘ + ‘ operator returns the expression in a
positive form, whereas the ‘ – ‘ operator returns the expression in a negative
form. The post-fix unary operators ‘ ++ ‘ and ‘ -- ‘ are only applicable to int.
‘ ++ ‘ operators increment the operand, whereas ‘ -- ‘ operators decrement it.

Multiplicative Operators
The binary operators ‘ * ‘, ‘ / ‘, ‘ % ‘ indicate multiplication, division, and
modulo respectively. They are grouped left-to-right. They are only
applicable to int, double, float.

Additive Operators
the binary operators ‘ + ‘, ‘ – ‘ indicate addition and subtraction, respectively.
They are grouped from left to right. They are applicable to int, double, float.

3.3 Relational Expressions
Binary relational operators ‘ >= ’, ‘ <= ’, ‘ = = ’, ‘ != ’, ‘ > ’ and ‘ < ’ indicate
whether the first operand is greater than or equal to, less than or equal to, equal to,
not equal to, greater than, or less than the second operand, respectively.

3.4 Logical Expression
Logical operators take relational expressions as operands. Or operator ‘ || ’
indicates the logical or of two relational; expressions. It has the lowest
precedence. And operator ‘ && ’ indicates the logical and of two relational
expressions. It has higher precedence than or operator.

4. Statements

Statements are basic elements of the program. A sequence of statements are
executed sequentially, unless flow-control statements indicate otherwise.

4.1 Statements in ‘ { ‘ and ‘ } ’
If a group of zero or more statements can be surrounded by ‘ { ‘ and ‘ } ’, then they
are grouped and run together in a sequential manner.

 4

4.2 Assignments
To assign right valued expression to left valued expression,

left-valued expression = right-valued expression;

4.3 Conditional Statements
Conditional statements have two forms. The first form is,

 if (relational expression)
 {
 statements;
 }

The statement is executed if the relational expression is evaluated to be true.
Otherwise, it skips the statements within the curly brackets and continues the
program. The second form is,

 if (relational expression)
 {
 statements;
 }
 else
 {
 statements;
 }

This form works same as the first form, but the relational expression is
evaluated to be false, it executes the statements enclosed by else curly bracket.

4.4 Loops
All loops in the language take the form of a while loop. To use the while loop,

 5

 while (relational expression)
 {
 statements;
 }

As long as the relational expression is evaluated to be true, the statements will be
repeated.

Break statement is introduced to break out from the loop and continue the program.
To use break statements, type keyword break followed by a statement terminator
‘ ; ‘

5. General Function Calls

Function call takes the following form,

 function_name(parameter list);

Function must be defined before it is called. Parameter list must take the same
type of variables as defined previously.

5.1 Return statements
Return statement is used within the function definition body to return the specific
value. A basic return statement would look like,

 return return_value;

5.2 Include Other Files
To attach other files,

 attach filename;

5.4 Function Definition
To define a function,

 6

return_type function_name (parameter list)
{
 statements;
 return return_type;
}

Function_name is the name of the function that user has given and the parameter
list is a list of identifier of arguments, separated by commas ‘ , ’.
Parameter list can be empty. Return type may be void.

5.5 Console output function
The function print() has two different versions. The first version takes a variable
as an argument and prints out the value of the variable. It takes the form,

 print(variable);

The second version takes a string and prints it out to the screen. The string must
be enclosed in double quotes and takes the form,

print(“This will be printed.”);

5.6 File I/O Functions
Function load() will load a picture and display it or load a sound file and play it.
Image file can be jpg and sound file can be mp3. To use load() function,

 load(file_type, filename);

6. skyEM Special Features

6.1 Subject Object
This object represents one examination with all of its questions and answers along
with other properties, such as time limit, order of the questions, and the types of
questions. It is declared in the following way

 7

 subject subject_name(int, rand/seq(opt), int/all(opt))
 {
 statements;
 }

The first integer argument represents the time limit for this particular examination.
The second argument will decide how the questions will be presented, either
randomly or sequentially. This parameter is optional. The last argument
determines how many questions will be appeared during the examination. If this
is set to all, all questions will be appeared. This parameter is also optional.

6.2 Question Object
This object represents an individual question. It is created in the body of subject
objects. There are several types of questions; multiple choice question, matching,
true/false, one word answer and they are declared in the following manner;

 question multiple(int)
 {
 ask(string);
 answer(string);
 choices(string, string …);
 }

Declaration of a question always takes an integer which is the points worth of this
question. ask() function takes the questions string and displays it with an
appropriate numbering scheme. answer() function takes the answer string and
defines the answer. choices() function takes up to 6 answer choices strings and
display them. Other questions objects are used in a similar manner.

6.3 Built in functions
There are several built-in scoring functions associated with subject object. First
function is total() function, which returns total score of the examination. It is
used as following,

 subject_name.total();

 8

The second function is score() function, which returns the exam score for the
subject. It is used as following,

 subject_name.score();

The third function is percentage() function, which returns the percentage value of
the score. It is used as following,

 subject_name.percentage();

The fourth function is start() function, which starts the examination for the subject.
It is used as following,

 subject_name.start();

 9

