
Chapter 1

Language Reference Manual

Patternizer

Alexander, Yianni
Constantinides, Marinos
Ditcheva, Boriana
Tchakalov, Yavor
Vartanian, Adam

1.1 Lexical Conventions and Tokens

Tokens are punctuation, comments, identifiers, number constants, strings, re-
served keywords, and operators.

1.1.1 Comments

You can place comments in the text by either using /* ... */ or for a single line
//.

1.1.2 Identifiers

Identifiers must begin with a letter or an underscore symbol ’ ’, but then can
consist of any sequence of digits, letters, and the uderscore symbol. Upper and
lower case letters are different. Identifiers can be used to identify the 4 types in
our language: real numbers, points, patterns, and strings.

1.1.3 Numbers Constants

Numbers consists of digits, optional decimal point, and optional ’e’ followed by
a signed integer exponent. We will only be using real numbers.

1

1.2 Types Language Reference Manual

1.1.4 Strings

Strings are text that begin with ” and end with ”.

1.1.5 Keywords

The following are reserved for use as keywords, and may not be used otherwise:

for while if else
break pattern #include print
scale move rotate

1.1.6 Operators and Other Tokens

Characters or sequences of characters used in the language:

{ } () + -
∗ / ; , = − >
== != += -= ∗= /=
< > <= >= && ||
! ”

1.2 Types

We have only 4 types which can be represented using identifiers. There are real
numbers, points, patterns, and strings. There are no type identifiers, except for
the declaration of patterns, thus our language is not statically-typed.

1.2.1 Reals

The real numbers can be maintained as 64-bit floating point numbers.

1.2.2 Points

Points are a pair of two real numbers, represented by an open paranthesis, a
real number corresponding to the horizontal coordinate, a comma, another real
number corresponding to the vertical coordinate, then finally following a closing
parenthesis. An example of a point would be:
(0,1).

1.2.3 Patterns

Patterns are definitions of how to draw things. They can contain points con-
nected to form lines and other patterns. Only line segments can be drawn. If
one wants to draw a point, she must draw a small line centered at the point.

2

1.3 Expressions Language Reference Manual

1.2.4 Strings

String identifiers and variables are allowed in our language. Strings will be used
to print statements, mostly for debugging purposes, and to specify filenames to
include.

1.3 Expressions

1.3.1 Primary Expressions

Primary expressions are the basic element expressions of our language. These
can include any of our types, either as identifiers or constants, as well as the
representation of a point.

1.3.2 Arithmetic

An arithmetic expression is to be evaluated using obvious methods. Sometimes
the pattern parameters will be determined using some sort of function and those
functions are evaluated as arithmetic expressions. Additional manipulation will
be available as stand-alone expressions. Arithmetic expressions take primary
expressions as operands. Any mathematical operation on real numbers is al-
lowed, such as +, -, *, /, +=, -=, *=, /=. Arithmetic expressions for points is
limited to translation +,+= and scaling *,*=. These will be performed on the
points as they would be on vectors.

1.3.3 Relational

Similar to arithmetic, relational expressions will be helpful in pattern and con-
trol flow. Boundary conditions will be necessary when constructing patterns
and comparisons will be allowed using standard notation(these operations will
be limited to reals): <, >, <=, >=. Relational expressions can also involve
patterns and points, but are limited to the operations of != and ==. Of course
these operations can also be performed on reals.

1.3.4 Logical

Logical expressions will be used in conditional and looping statements. They
will essentially evaluate to either 0 or 1, which will determine program flow on
conditionals and loops. Operators associated with logical expressions are: &&,
||, and !, which denote ”and”, ”or”, and ”not”, respectively.

1.3.5 Operational

The arrow operator ’->’ connects two points or two lines (or a point to a line). It
is automatically evaluated to draw the resulting segment on the screen. There-
fore, the simplest form of a line would involve two points:

3

1.4 Statements Language Reference Manual

(0,0)->(1,1);
It is also possible to connect points to already existing lines, by drawing a line
from the last point in the sequence, to the either the new point, or the first
point of the new line.
Thus,
(0,0)->(1,1)->(2,2);
is also acceptable syntax.

1.3.6 Precedence of Operators

Below is a table of precedence for our operators.

* /
+ -
->
= += -= *= /=
< > <= >= == !=
&& || !

1.4 Statements

Statements are used primarily for control flow as the major usage of our language
is in displaying patterns which are realized as expressions. Thus our statements
are rudimentary and necessary.

1.4.1 Transformation Statements

Patterns can be transformed through transformation statements. These state-
ments are limited to: scale, move, and rotate. These statements can be applied
either locally or globally. If they are made outside of a pattern, they apply to
the global environment. If they are declared within the pattern, they only apply
locally to the current pattern. All patterns that stem from an original pattern
inherit the transformation properties.

1.4.2 Assignments

Assignments are made using the ’=’ operator. Point identifiers can be assigned
the values of other points using other point identifiers or explicit definition of
points. Patterns can also be assigned using the ’=’ operator, and can be assigned
other pattern identifiers or point identifiers. Patterns cannot be assigned explicit
patterns, but rather are defined using explicit patterns.

4

1.5 Pattern Definition Language Reference Manual

1.4.3 Loops

There are two kinds of loops used in the language: for and while. Standard
C-style syntax will be used in construction of loop statements.

1.4.4 Conditional

Conditional statements will be allowed using the standard if-else paradigm, with
a few specific tailorings. First of all, the only keywords associated with condi-
tional statments are if and else. A conditional statement is in the form:

if (<logical expression>)
<statement>

or

if (<logical expression>)
<statement>

else
<statement>

1.4.5 Include

Other pattern files can be included by specifying which pattern files to include
before any explicity patterns in the file are defined. To include a pattern file,
the line
#include "filename";
must appear before any explicit pattern definitions. Multiple inclusions are
allowed.

1.4.6 Break

The language will support a break statement which operates as follows. If
break is called within a loop, it will exit out of the most immediate loop. If
break is called within a pattern definition, it will exit out of the current pattern
and proceed to the next pattern definition. If called in a conditional it will exit
out of both branchings.

1.5 Pattern Definition

Patterns are definid by newly created identifiers followed by an open curly brace
’{’. Thus, to make a rectangle pattern, the syntax would appear as:
pattern my rectangle {

(0,0)->(2,0)->(2,2)->(0,2)->(2,2);
}

5

1.6 Internal Functions Language Reference Manual

1.6 Internal Functions

1.6.1 Print Function

Printing strings out to console is allowed in our language, mostly for debugging
purposes and printing pattern paramaters. It would be possible to print identi-
fiers as well as strings. A print would appear like this:
print ("x = "x", y = "y);

6

