HGL: Language Reference Manual

Yan Koyfman (ysk2106@columbia.edu)
Shruti Gandhi (s1g2109@columbia.edu)
Timothy Kaczynski (tdk2102@columbia.edu)
Edward Mezarina (eem65@columbia.edu)

October 20, 2005

COMS W4115: Programming Languages and Translators
Department of Computer Science
Columbia Unwversity

Contents
1 Grammar Notation

2 Lexical Conventions

2.1 Comments
2.2 Whitespace
2.3 Identifiers
2.4 Keywords
2.5 Strings
2.6 Operators
2.7 Other Tokens
2.8 Variables
2.9 Types . . .
2.9.1 Avwailable Types
2.9.2 Opaque Types. e
2.10 EXpPressions e
2.10.1 Literal constants
2.10.2 Parenthesized Expressions oL
2.10.3 Function Calls
2.10.4 Arithmetic Expressions
2.10.5 Operators
2.10.6 Relational
2.10.7 Conditional
2.10.8 Operator Precedence
2.11 Statements
2.11.1 Declarative Statements L.
2.11.2 Control Flow Statements

3 HGL Library
3.1 Built-in HTML Objects

00 ~J~J~JJO OO O ULULU i s Wwwwww w

©

1 Grammar Notation

The reference manual for the Hypertext Generation Language follows. Text in this typeface
implies an example of HGL syntax as it would appear in a source file, while text in standard
and slanted typefaces denotes explanatory passages.

2 Lexical Conventions

2.1 Comments

Embedded comments are prefixed with two forward slash characters //, which instruct the
compiler to ignore the remainder of the line.

2.2 Whitespace

Whitespace separates tokens in HGL, and includes space, tabs and newlines. The amount
of whitespace between elements is not important except when it appears in a string.

2.3 Identifiers

Identifiers consists of letters, digits, and underscore. The first character of the identifier
should be a non-digit or an underscore. Upper and lower case letters are considered different.

2.4 Keywords

These identifiers are reserved as keywords and may not be used in other contexts where they
are not explicitly allowed by this document:

boolean while
char paragraph
const olist
else ulist

if page

int true
string false
continue break
return void

table image

2.5 Strings

Strings are sequences of characters enclosed by double quotes "abc". A double quote inside
the string is escaped by a another double quote "".

2.6 Operators

The following arithmetic operators are permitted for integer and float types:

+ Addition

- Subtraction

/ Division

* Multiplication

Assignment (valid for string and boolean objects also)

Boolean operators, applicable to integer, float and boolean types, include:

< Less than

> Greater than

<= Less than or equals

>= Greater than or equals
== Equality

I= Inequality

| Boolean or

&& Boolean and
The following non-arithmetic operators are permitted:

. (dot) HTML Object function access
| String concatenation

2.7 Other Tokens

Some symbolic characters or sequences of symbolic characters are used in the language:

{1} Group statement blocks
() Enclose function arguments
[1] Indicate array size when appended to variable declaration

4

, Separate elements in lists
; Statement terminator
$ When followed by a keyword, denote variable names

2.8 Variables

Variables are represented by a dollar sign $ followed by the identifier, or name of the variable.
Variable names are case-sensitive. A valid variable name starts with a letter or underscore,
followed by any number of letters, numbers, or underscores, the same rules as for identifiers.

2.9 Types
2.9.1 Available Types

HGL supports a subset of standard data types along with this language’s built-in Data Type
Objects representing HTML constructs.

Type Declaration Syntaz | Sample Values

String string s; "My html pagel";
Integer int a; -2147483648 to 2147483647
Float float f; 3.4e+05 (see below)
Boolean boolean b; true or false

Page page p; opaque type
Paragraph paragraph pg; opaque type

Table table t; opaque type

Image image 1i; opaque type
Unordered List | ulist u; opaque type

Ordered List olist o; opaque type

Array ulist lists[5]; | [positive integer]

*A floating point number consists of an integer part, a decimal point, a fraction part, (’e’|’E’),
and an optionally signed integer exponent. The integer and fraction parts both consist of a
sequence of digits. The decimal point and fraction part, and the (’e¢’|’E’) and exponent are
optional.

2.9.2 Opaque Types

Though they follow the same naming and instantiation rules as normal primitive types,
the opaque objects representing HTML constructs are typically modified through member
functions and attributes. These objects are described in the LRM Library section.

2.10 Expressions

2.10.1 Literal constants

Literal constants include all references to int, float, string, or boolean values which appear
in program code as a literals and not stored in variable.

2.10.2 Parenthesized Expressions

An expression enclosed in parenthesis () has the same value as the identical expression writ-
ten without parenthesis. Parenthesis can be nested to an arbitrary degree, e.g., (((ezp)))
provided parenthesis are balanced.

2.10.3 Function Calls

Function call syntax is similar to C. Examples:

print ($webPage) ; void functions not returning values
$var = fun(Q); functions returning values
do_work(10, "a string"); example of arqgument list

2.10.4 Arithmetic Expressions

HGL supports standard arithmetic operations for integers and floating point numbers: + - / *.
See below for precedence rules.

2.10.5 Operators

HGL supports a set of relational and conditional operators that will allow the user to deter-
mine the relationship between two values. For this purpose, HGL will allow the use of rela-
tional and conditional operators in conjunction to construct more complex decision-making
expressions.

2.10.6 Relational

Operator | Use Description

> vl > v2 | Returns true if vl is greater than v2

>= vl >= v2 | Returns true if vl is greater than or equal to v2
> vl > v2 | Returns true if v1 is less than v2

<= vl <= v2 | Returns true if vl is less than or equal to v2

== vl == v2 | Returns true if vl and v2 are equal

I= vl !'= v2 | Returns true if vl and v2 are not equal

2.10.7 Conditional

Operator | Use Description
vl && v2 | Returns true if vl and v2 are both true;

&& .
conditionally evaluates v2
vl || v2 | Returns true if either v1 or v2 is true;
| o
conditionally evaluates v2
! v Returns true if v is false

2.10.8 Operator Precedence

Precedence rules were derived from PHP rules.

Operators | Associativity
* / left (highest)
+ - left

< <= > >= | non-associative
== I= non-associative
&& left

|l left

= right (lowest)

2.11 Statements

HGL statements are composed of either simple expressions terminated by a semicolon, com-
pound statements surround by { and } and the control flow and iteration statements de-
scribed below. Statements are executed in order from the beginning of the file to the end,

unless explicitly redirected through function calls, iteration or control-flow structures. Ex-
ecution of statements starts with the first line in the file, not from any specially named
function.

2.11.1 Declarative Statements

Variables All variables must be declared before they are used. Declaration syntax is simi-
lar to that of C, except that variables cannot be initialized at the time of their introduction.
Storage space is reserved for variables upon their declaration. Examples:

int color;
page datal5];

Functions All functions must be defined before they are used, but function declaration
syntax allows function names to be introduced and types and arguments declared before the
functions themselves are defined, as in C or C++. Function blocks are delimited by braces.
The following example shows a function being declared, and later defined:

int foo(string s);
arbitrary code

int foo(string s) { statements }

Neither function declarations nor function definitions may be nested.

Scope Names are available in one of two scopes, global or function-level. Variables declared
outside of any function are visible globally and in all functions; variables defined within a
function are only visible in that function.

2.11.2 Control Flow Statements

Statement Type | Keyword | Example
while while (condition) { statement };

Tterative

if-else | if (condition) { statement 7};
Condition if (condition) { statement }
else { statement }

break - Break out of a while loop or if statement.
continue - Skip to next iteration of while loop.
return expression - Leave function, optionally returning a value.

3 HGL Library

3.1 Built-in HTML Objects

The following HT'ML constructs are represented as first-order primitives in the language.

e page page
— Functions
— print () - output HTML/CSS code for page object
— addElement (HTML object) - add an HTML object to the page
— Attributes:type
— bgcolor:int - RBG value for bg color

e paragraph paragraph

— Functions

— Attributes:type

— bgcolor:int - RBG value for bg color
— textType:string - font face style

e unordered list ulist

— Functions

— addItem(Ztem) - add list item; numeric or string
— Attributes:type

— bgcolor:int - RBG value for bg color

— fgcolor:int - RBG value for text

e ordered list olist

— Functions

addItem(ztem) - add list item; numeric or string

Attributes:type

bgcolor:int - RBG value for bg color
— fgcolor:int - RBG value for text

e table table

— Functions

— addElement(item, loc) - add item to cell
— Attributes:type

— bgcolor:int - RBG value for bg color

— rows:int - number of rows

— columns:int - number of columns
e image image

— Functions
— setPath(addr) - path to image
— Attributes:type

— border:boolean - set border around image

10

