
Embedded System Design Lab 2
Stephen A. Edwards

Due August 4, 2005

Abstract
Write a C program to make the board behave as half of a simple
terminal emulator. Have your program use the provided UART
and character display to receive and display a stream of ASCII
characters. Handle newlines, carriage returns, and scrolling the
screen when the cursor reaches the bottom.

1 Introduction
In this lab, you will write C code that integrates two peripherals:
a UART and a text-mode video controller. The result will be a
simple system that takes characters from the serial port (you can
send them to the board by typing in a hyperterminal window)
and displays them on the monitors. Such so-called TV typewrit-
ers were all the rage in the early 1970s, when it first became
possible to build such systems with off-the-shelf hardware.

Use an interrupt routine to receive the character from the
UART, and a main loop that copies the characters from the buffer
where the interrupt routine has placed them onto the screen.

For printable characters, your program should simply display
them and advance the cursor. Non-printing characters, specifi-
cally carriage return (control-M) and newline (control-J), should
move the cursor. Specifically, a carriage return should move the
cursor to the leftmost position on the same line, while newline
should move the cursor down a line without affecting its hori-
zontal position. This behavior is typical for terminals and is left
over from Teletype days.

If the cursor tries to go off the bottom of the screen, scroll the
characters on the screen up one line to ensure the cursor stays at
the bottom.

2 Getting Started
We have provided a skeleton project that exercises the video dis-
play and UART. Make sure it compiles, downloads, runs, and
displays video before tackling the rest of this lab.

1. Download and unpack lab2.zip from the class webpage.

2. Run hyperterminal as you did in Lab 1.

3. Open Platform Studio by double-clicking the system.xmp
file in the lab2 directory.

3 The Video Display
For this assignment, I created a custom OPB peripheral: a text-
mode VGA controller. On a standard 640 × 480 VGA-speed

raster (a 60 Hz frame rate), it displays an 80 × 30 character
matrix using an 8 × 16 font. It stores both the character and the
font in on-chip “block” RAMs (2.5K for the characters, 1.5K for
the font), which can be both read and written from C.

The 4K of video memory appears as a contiguous region of
memory starting at 0xfeff1000. The first 2.5K of this area stores
the character information (Actually, only the first 2400 bytes
are used for the 80 × 30 display. Each character consumes a
single byte. The remaining 160 are not used by the video sys-
tem.). This is arranged in the usual manner: 0xfeff1000 stores
the character in the upper-left corner, 0xfeff1001 holds the char-
acter immediately to its right, and each new row starts 80 bytes
after the last one. The remaining 1.5K, starting at 0xfeff1a00,
stores the font, arranged as 96 characters, each 16 bytes long.
The most significant bit of each byte of the font corresponds to
the leftmost pixel of a character and 1’s appear as white pixels.
The first character of the font (bytes 0xfeff1a00 to 0xfeff1a0f)
holds the character numbered 0x20, corresponding to an ASCII
space.

The video memory interface is fairly fast, but can only be
accessed a byte at a time (i.e., treating the memory as an array
of shorts or integers will not work properly).

The font RAM is initialized with a standard ASCII font (an
IBM console font from a Linux distribution), the result being
that printable strings in C can be copied directly to the screen
without translation. Character 0x20 is all black, i.e., a space,
and character 0x7f is a solid white box that could be used to
display a cursor if desired.

4 Interrupts
Your TV typewriter will accept characters at 9600 baud, mean-
ing a new character can arrive every

8 data bits+1 start bit+1 stop bit
9600 bits / second ≈ 1ms

The Microblaze runs at 50 MHz, so this gives us at most

50×106 instructions
second ·1ms = 50000 instructions,

which is plenty of time to display a single character and move
the cursor. When it becomes necessary to scroll the screen, we
need to copy 80 × 30 = 2400 bytes (one per character), which
can be done quickly enough so that the next input character is
not missed.



Interrupts are the preferred solution for handling communi-
cation from a peripheral to a processor. Rather than having to
repeatedly check the peripheral, the peripheral sends an interrupt
to the processor that causes it to stop what it is doing, save its
state, and run an interrupt routine that quickly gathers data from
the peripheral before returning to the program that was running
before the interrupt occurred.

Interrupts are the solution to the scrolling problem: by mak-
ing it possible for the UART to interrupt the scrolling routine,
characters that arrive during a scroll can be saved for after the
scrolling finishes. While such an approach does not help us if
the program simply cannot keep up with its input (e.g., when
the time to process a character is longer than the time between
characters), we expect that scrolling happens fairly infrequently.

Interrupt service routines are written to run as quickly as pos-
sible and do as little work as possible. While it would be pos-
sible to have the interrupt routine itself display characters and
scroll the screen, this defeats the purpose of using an interrupt.
Instead, the interrupt routine should only check whether a new
character has arrived (other sources of interrupts might have in-
advertantly invoked the routine), get the new character from the
UART, acknowledge the interrupt so the UART is ready for the
next character, and enqueue the character into a buffer for the
main routine to handle later.

A tricky aspect of having an interrupt routine is that it may be
invoked at any time. This is not a problem provided the interrupt
routine does not modify anything the main routine is trying to
read or write, but at least something needs to be shared since
some form of communication must take place.

The danger comes, for example, when the interrupt routine
is writing a character into the buffer at the “same time” main
routine is reading a character. If the execution of these two op-
erations is not carefully interleaved, the buffer used to commu-
nicate between the two systems might become corrupted (e.g.,
appear to have a character in it when it does not).

The usual solution is to disable interrupts while accessing
memory locations that are shared with an interrupt routine. This
guarantees that the interrupt routine will not modify this mem-
ory during this time, albeit at the possible expense of increasing
interrupt latency—the maximum time between when a periph-
eral issues an interrupt and when the program acknowledges it.

5 The Assignment
In lab2.zip, you will find a skeleton for this lab that includes
a C source file that enables interrupts and registers an interrupt
handler routine handler before going into a (boring) main loop
that periodically prints the number of characters the interrupt
routine has received and the most recent character.

The interrupt routine, uart int handler(), is more interesting.
The first part of the main() function installs this function as a
handler for interrupts generated by the UART. It checks whether
a new character has come in (see the Xilinx UART lite datasheet
for documentation) and if so, saves the character and increments
a counter.

Implement a circular buffer that communicates from the in-
terrupt routine to the main character routine. Use two pointers:
one pointing to where the next character will be written into the
buffer and one pointing to the next character to be taken from
the buffer. Make the two wrap around and be sure to avoid a
buffer overflow condition. Be careful when reading from the
buffer—disable interrupts when necessary and do so for as little
time as possible.

The main routine should look like

for (;;) {
while (no character in buffer)

/* do nothing */
get character from buffer
display character on screen
if necessary, scroll the screen

}

The interrupt routine should look like

if (there is a new character) {
get the character
clear the interrupt
if (the buffer is not full) {

write the character into the buffer
advance the buffer pointer

}
}

Show your working TV typewriter to a TA, have him sign a
printout of your solution (i.e., all .c files), and hand that it.

2


