
Control Flow
COMS W4115

Prof. Stephen A. Edwards
Spring 2003

Columbia University
Department of Computer Science

Control Flow

“Time is Nature’s way of preventing everything from
happening at once.”

Scott identifies seven manifestations of this:

1. Sequencing foo(); bar();

2. Selection if (a) foo();

3. Iteration while (i<10) foo(i);

4. Procedures foo(10,20);

5. Recursion foo(int i) { foo(i-1); }

6. Concurrency foo() || bar()

7. Nondeterminism do a -> foo(); [] b -> bar();

Ordering Within Expressions

What code does a compiler generate for

a = b + c + d;

Most likely something like

tmp = b + c;

a = tmp + d;

(Assumes left-to-right evaluation of expressions.)

Order of Evaluation

Why would you care?

Expression evaluation can have side-effects.

Floating-point numbers don’t behave like numbers.

Side-effects

int x = 0;

int foo() { x += 5; return x; }

int a = foo() + x + foo();

What’s the final value of a?

Side-effects

int x = 0;

int foo() { x += 5; return x; }

int a = foo() + x + foo();

GCC sets a=25.

Sun’s C compiler gave a=20.

C says expression evaluation order is
implementation-dependent.

Side-effects

Java prescribes left-to-right evaluation.

class Foo {

static int x;

static int foo() { x += 5; return x; }

public static void main(String args[]) {

int a = foo() + x + foo();

System.out.println(a);

}

}

Always prints 20.

Number Behavior

Basic number axioms:

a + x = a if and only if x = 0 Additive identity

(a + b) + c = a + (b + c) Associative

a(b + c) = ab + ac Distributive

Misbehaving Floating-Point
Numbers

1e20 + 1e-20 = 1e20

1e-20 � 1e20

(1 + 9e-7) + 9e-7 6= 1 + (9e-7 + 9e-7)

9e-7 � 1, so it is discarded, however, 1.8e-6 is large
enough

1.00001(1.000001 − 1) 6= 1.00001 · 1.000001 − 1.00001 · 1

1.00001 · 1.000001 = 1.00001100001 requires too much
intermediate precision.

What’s Going On?

Floating-point numbers are represented using an
exponent/significand format:

1 10000001
︸ ︷︷ ︸

8-bit exponent

01100000000000000000000
︸ ︷︷ ︸

23-bit significand

= −1.0112 × 2129−127 = −1.375 × 4 = −5.5.

What to remember:

1363.4568
︸ ︷︷ ︸

represented

46353963456293
︸ ︷︷ ︸

rounded

What’s Going On?

Results are often rounded:

1.00001000000

×1.00000100000

1.000011 00001
︸ ︷︷ ︸

rounded

When b ≈ −c, b + c is small, so ab + ac 6= a(b + c)

because precision is lost when ab is calculated.

Moral: Be aware of floating-point number properties when
writing complex expressions.

Short-Circuit Evaluation

When you write

if (disaster_could_happen)

avoid_it();

else

cause_a_disaster();

cause_a_disaster() is not called when
disaster_could_happen is true.

The if statement evaluates its bodies lazily: only when
necessary.

Short-Circuit Evaluation

The section operator ? : does this, too.

cost =

disaster_possible ? avoid_it() : cause_it();

cause_it is not called if disaster_possible is true.

Logical Operators

In Java and C, Boolean logical operators “short-circuit” to
provide this facility:

if (disaster_possible || case_it()) { ... }

cause_it() only called if disaster_possible is
false.

The && operator does the same thing.

Useful when a later test could cause an error:

int a[10];

if (i => 0 && i < 10 && a[i] == 0) { ... }

Short-Circuit Operators

Not all languages provide short-circuit operators. Pascal
does not.

C and Java have two sets:

Logical operators || && short-circuit.

Boolean (bitwise) operators | & do not.

Unstructured Control-Flow

Assembly languages usually provide three types of
instructions:

Pass control to next instruction:

add, sub, mov, cmp

Pass control to another instruction:

jmp rts

Conditionally pass control next or elsewhere:

beq bne blt

Unstructured Control-Flow

So-called because it’s easy to create spaghetti:

beq A

B:

jmp C

A:

beq D

C:

beq B

D:

bne B

Structured Control-Flow

The “object-oriented languages” of the 1960s and 70s.

Structured programming replaces the evil goto with
structured (nested) constructs such as

if-then-else

for

while

do .. while

break

continue

return

Gotos vs. Structured Programming

A typical use of a goto is building a loop. In BASIC:

10 print I

20 I = I + 1

30 IF I < 10 GOTO 10

A cleaner version in C using structured control flow:

do {

printf("%d\n", i);

i = i + 1;

} while (i < 10)

An even better version

for (i = 0 ; i < 10 ; i++) printf("%d\n", i);

Gotos vs. Structured Programming

Break and continue leave loops prematurely:

for (i = 0 ; i < 10 ; i++) {

if (i == 5) continue;

if (i == 8) break;

printf("%d\n", i);

}

Again: if (!(i < 10)) goto Break;

if (i == 5) goto Continue;

if (i == 8) goto Break;

printf("%d\n", i);

Continue: i++; goto Again;

Break:

Escaping from Loops

Java allows you to escape from labeled loops:

a: for (int i = 0 ; i < 10 ; i++)

for (int j = 0 ; j < 10 ; j++) {

System.out.println(i + "," + j);

if (i == 2 && j == 8) continue a;

if (i == 8 && j == 4) break a;

}

Gotos vs. Structured Programming

Pascal has no “return” statement for escaping from
functions/procedures early, so goto was necessary:

procedure consume_line(var line : string);

begin

if line[i] = ’%’ then goto 100;

(* *)

100:

end

In C and many others, return does this for you:

void consume_line(char *line) {

if (line[0] == ’%’) return;

}

Loops

A modern processor can execute something like 1 billion
instructions/second.

How many instructions are there in a typical program?
Perhaps a million.

Why do programs take more than 1µs to run, then?

Answer: loops

This insight is critical for optimization: only bother
optimizing the loops since everything else is of vanishing
importance.

Enumeration-Controlled Loops in
FORTRAN

do 10 i = 1, 10, 2

...

10: continue

Executes body of the loop with i=1, 3, 5, . . . , 9

Tricky things:

What happens if the body changes the value of i?

What happens if gotos jump into or out of the loop?

What is the value of i upon exit?

What happens if the upper bound is less than the
lower one?

Changing Loop Indices

Most languages prohibit changing the index within a loop.

(Algol 68, Pascal, Ada, FORTRAN 77 and 90, Modula-3)

But C, C++, and Java allow it.

Why would a language bother to restrict this?

Prohibiting Index Modification

Optimizing the behavior of loops is often very worthwhile.

Some processors have explicit looping instructions.

Some compilers transform loop index variables for speed
or safety.

Letting the program do whatever it wants usually prevents
optimizations.

Empty Bounds

In FORTRAN, the body of this loop is executed once:

do 10 i = 10, 1, 1

...

10: continue

“for i = 10 to 1 by 1”

Test is done after the body.

Empty Bounds

Modern languages place the test before the loop.

Does the right thing when the bounds are empty.

Slightly less efficient (one extra test).

Scope of Loop Index

What happens to the loop index when the loop
terminates?

Index is undefined: FORTRAN IV, Pascal.

Index is its last value: FORTRAN 77, Algol 60

Index is just a variable: C, C++, Java

Tricky when iterating over subranges. What’s next?

var c : ’a’..’z’;

for c := ’a’ to ’z’ do begin

...

end; (* what’s c? *)

Scope of Loop Index

Originally in C++, a locally-defined index variable’s scope
extended beyond the loop:

for (int i = 0 ; i < 10 ; i++) { ... }

a = a + i; // Was OK: i = 10 here

But this is awkward:

for (int i = 0 ; i < 10 ; i++) { ... }

...

for (int i = 0 ; i < 10 ; i++) // Error:

// i redeclared

Scope of Loop Index

C++ and Java now restrict the scope to the loop body:

for (int i = 0 ; i < 10 ; i++) {

int a = i; // OK

}

...

int b = i; // Error: i undefined

...

for (int i = 0 ; i < 10 ; i++) { // OK

}

Rather annoying: broke many old C++ programs.

Better for new code.

Algol’s Combination Loop

for → for id := for-list do stmt

for-list → enumerator (, enumerator)*

enumerator → expr
→ expr step expr until expr
→ expr while condition

Equivalent:

for i := 1, 3, 5, 7, 9 do ...

for i := 1 step 2 until 10 do ...

for i := 1, i+2 while i < 10 do ...

Language implicitly steps through enumerators (implicit
variable).

Algol’s Combination Loop

Needlessly general, it turns out.

C’s logically controlled loop retains most of the
functionality:

for (i = 1 ; i < 10 ; i += 2) { ... }

is equivalent to

i = 1;

while (i < 10) {

...

i += 2;

}

Pre- and Post-test Loops

Most loops want their tests first to allow the possibility of
zero iterations.

struct foo *p = head; // Sum a linked list

while (p != 0) {

total += p->value;

p = p->next;

}

But it’s sometimes useful to place the test at the end:

char line[80];

do {

scanf("%s", line);

} while (line[0] == ’#’); /* skip comments */

Mid-test Loops

while true do begin

readln(line);

if all_blanks(line) then goto 100;

consume_line(line);

end;

100:

LOOP

line := ReadLine;

WHEN AllBlanks(line) EXIT;

ConsumeLine(line)

END;

Mid-test Loops

loop

statements

when condition exit

statements

when condition exit

...

end

Advantage: a syntactic construct.

Errors caught in parser.

Compare with Tiger’s break, which must fall within a
while or for. More difficult to check (static semantics).

Multi-way Branching

switch (s) {

case 1: one(); break;

case 2: two(); break;

case 3: three(); break;

case 4: four(); break;

}

Switch sends control to one of the case labels. Break
terminates the statement.

Implementing multi-way branches

switch (s) {

case 1: one(); break;

case 2: two(); break;

case 3: three(); break;

case 4: four(); break;

}

Obvious way:

if (s == 1) { one(); }

else if (s == 2) { two(); }

else if (s == 3) { three(); }

else if (s == 4) { four(); }

Reasonable, but we can sometimes do better.

Implementing multi-way branches

If the cases are dense, a branch table is more efficient:

switch (s) {

case 1: one(); break;

case 2: two(); break;

case 3: three(); break;

case 4: four(); break;

}

labels l[] = { L1, L2, L3, L4 }; /* Array of labels */

if (s>=1 && s<=4) goto l[s-1]; /* not legal C */

L1: one(); goto Break;

L2: two(); goto Break;

L3: three(); goto Break;

L4: four(); goto Break;

Break:

Recursion and Iteration

Consider computing

10∑

i=0

f(i)

In C, the most obvious evaluation is iterative:

double total = 0;

for (i = 0 ; i <= 10 ; i++)

total += f(i);

Recursion and Iteration
10∑

i=0

f(i)

But this can also be defined recursively

double sum(int i)

{

double fi = f(i);

if (i <= 10) return fi + sum(i+1);

else return fi;

}

sum(0);

Recursion and Iteration

Grammars make a similar choice:

Iteration:

clist : item ("," item)* ;

Recursion:

clist : item tail ;

tail : "," item tail

| /* nothing */

;

Tail-Recursion and Iteration

int gcd(int a, int b) {

if (a==b) return a;

else if (a > b) return gcd(a-b,b);

else return gcd(a,b-a);

}

Notice: no computation follows any recursive calls.

Stack is not necessary: all variables “dead” after the call.

Local variable space can be reused. Trivial since the
collection of variables is the same.

Tail-Recursion and Iteration

int gcd(int a, int b) {

if (a==b) return a;

else if (a > b) return gcd(a-b,b);

else return gcd(a,b-a);

}

Can be rewritten into:

int gcd(int a, int b) {

start:

if (a==b) return a;

else if (a > b) a = a-b; goto start;

else b = b-a; goto start;

}

Tail-Recursion and Iteration

Good compilers, especially those for functional
languages, identify and optimize tail recursive functions.

Less common for imperative languages.

But gcc -O was able to rewrite the gcd example.

Applicative- and Normal-Order
Evaluation

int p(int i) { printf("%d ", i); return i; }

void q(int a, int b, int c)

{

int total = a;

printf("%d ", b);

total += c;

}

What is printed by

q(p(1), 2, p(3));

Applicative- and Normal-Order
Evaluation

int p(int i) { printf("%d ", i); return i; }

void q(int a, int b, int c)

{

int total = a;

printf("%d ", b);

total += c;

}

q(p(1), 2, p(3));

Applicative: arguments evaluated before function is called.

Result: 1 3 2

Normal: arguments evaluated when used.

Result: 1 2 3

Applicative- vs. and Normal-Order

Most languages use applicative order.

Macro-like languages often use normal order.

#define p(x) (printf("%d ",x), x)

#define q(a,b,c) total = (a), \

printf("%d ", (b)), \

total += (c)

q(p(1), 2, p(3));

Prints 1 2 3.

Some functional languages also use normal order
evaluation to avoid doing work. “Lazy Evaluation”

Argument Order Evaluation

C does not define argument evaluation order:

int p(int i) { printf("%d ", i); return i; }

int q(int a, int b, int c) {}

q(p(1), p(2), p(3));

Might print 1 2 3, 3 2 1, or something else.

This is an example of nondeterminism.

Nondeterminism

Nondeterminism is not the same as random:

Compiler usually chooses an order when generating code.

Optimization, exact expressions, or run-time values may
affect behavior.

Bottom line: don’t know what code will do, but often know
set of possibilities.

int p(int i) { printf("%d ", i); return i; }

int q(int a, int b, int c) {}

q(p(1), p(2), p(3));

Will not print 5 6 7. It will print one of

1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1

Nondeterminism

Nondeterminism lurks in most languages in one form or
another.

Especially prevelant in concurrent languages.

Sometimes it’s convenient, though:

if a >= b -> max := a

[] b >= a -> max := b

fi

Nondeterministic (irrelevant) choice when a=b.

Often want to avoid it, however.

