
A Two-Page Introduction to ANTLR

Stephen A. Edwards, Columbia University

ANTLR comprises the functionality of a lexer generator (e.g.,
supplanting lex or flex), a parser generator (e.g., supplanting
YACC or Bison), and an AST walker. It is highly customizable,
has been under development for many years, and generates code
in Java, C++, or Sather formats. I have found it to be very flexi-
ble and embody many best compiler design practices.

To illustrate ANTLR, I show how it can be used to build a
grammar for a simple calculator-like language that parses and
interprets programs that look like

foo = 3 + 4;
bar = 2 * (5 + 4);
print "The answer is";
print foo + bar;
if foo+bar then print "non zero";

1 The Lexer

Figure 1 shows the lexer for the simple langauge. Running this
through ANTLR produces a Java class called “SimpLexer” that
produces tokens from the input stream. Figure 4 shows how
a lexer is created, connected to the standard input stream (this
could also have been a file), and passed to the parser.

Lexer rules begin with a capital letter and contain grammar-
like specifications for the text of a token.

Unlike Lex or Flex, ANTLR generates predictive lexers that
behave much like recursive-descent parsers. The first k char-
acters of a token must be enough to distinguish which non-
protected rule is in force. For this example k = 2 (set in the
options section) because the lexer needs to look two characters
ahead to decide when a string constant terminates.

Protected rules in the lexer can be used by other rules, but do
not return tokens by themselves. In this example, LETTER and
DIGIT are used in the rules for ID and NUMBER; the parser
will never see LETTER or DIGIT tokens by itself.

ANTLR identifies keywords differently than automata-based
scanners. Rather than having a separate rule for each keyword
and construct a complicated automata that can identify them,
ANTLR assumes keywords are caught by other rules (typically
identifiers, as in this lexer, although any rule can be used in this
way: the rule for PARENS is used in this way in this example).
After each token is recognized, the scanner checks its literals
table to see if the text for the token matches one of the literals
(e.g., a keyword). If the text matches, the scanner returns the
type of the literal token, not the rule that matched it.

This makes it easy for the parser to pass keywords (here “if,”
“then,” “else,” “(,” and “)”) to the lexer. Literal strings in double
quotes are entered in the lexer’s literal table and matched.

This technique of matching token text can have pitfalls. We
do not want a string such as “if” being parsed as a keyword. In
this example, I avoided this problem by turning literal matching
off for all but the ID and PARENS rules; the ANTLR-generated
lexer will not check its literal table when it encounters a string.

Actions can be included in the lexer by enclosing Java code in
braces. I’ve used an action to discard whitespace: by setting the

class SimpLexer extends Lexer;
options { testLiterals = false; k = 2; }

PLUS : ’+’ ;
MINUS : ’-’ ;
TIMES : ’*’ ;
DIV : ’/’ ;
ASSIGN : ’=’ ;
PARENS options { testLiterals = true; }

: ’(’ | ’)’ ;
SEMI : ’;’ ;

protected LETTER : (’a’..’z’ | ’A’..’Z’) ;
protected DIGIT : ’0’..’9’ ;

ID options { testLiterals = true; }
: LETTER (LETTER | DIGIT | ’_’)* ;

NUMBER : (DIGIT)+;

STRING : ’"’! (’"’ ’"’! | ˜(’"’))* ’"’! ;

WS : (’ ’ | ’\t’ | ’\n’ { newline(); } | ’\r’)
{ $setType(Token.SKIP); } ;

Figure 1: The lexer for the simple langauge.

type of the token to “SKIP,” the lexer discards the token and goes
on to the next. A call to “newline” in the rule for whitespace
counts the number of lines.

Like all of ANTLR, lexer specifications use an extended BNF
form in rules. In this example, I’ve used the Kleene star op-
erator to represent zero or more instances of letters, digits, or
underlines in the rule for ID.

The crytic rule for STRING is actually fairly simple ANTLR’s
ability to modify the text of a token as it is being scanned (im-
possible with an automata-based scanner). The chosen syntax
for string constants is a sequence of characters enclosed in dou-
ble quotes ". A double quote is included in the string by dou-
bling double quotes, i.e., "". The lexer rule modifies the string
as it is being scanned so the text of the string token is as desired:
the !s after the first and last double quotes discard them when
they are encountered, removing the surrounding quotes, and the
! in the body discards the second of two double quotes in a row.
Thus, only the first double quote in a pair is copied into the text,
exactly what the escape sequence implies.

2 The Parser

Figure 2 shows the parser for the simple langauge. ANTLR

builds LL(k) recursive-descent parsers. The advantage of such
an approach is that actions can be inserted anywhere within the
grammar, including very early in a rule, and that the operation of
the parser is easy-to-understand because it is essentially a direct
translation of the grammar. The disadvantage of this approach
is that LL(k) langauges are more restricted than the LALR(1)
grammars YACC or Bison parse. This example has k = 2 be-
cause it is necessary to look two tokens ahead to recognize the
assignment operation (both assignment and expr1 can start with
an ID, but only assignment may have an “=” following it).

class SimpParser extends Parser;
options { buildAST = true; k = 2; }

file : (expr SEMI!)+ EOF!;

expr
: "if"ˆ expr "then"! expr

(options {greedy=true;} : "else"! expr)?
| "print"ˆ (STRING | expr)
| ID ASSIGNˆ expr
| expr1
;

expr1 : expr2 ((PLUSˆ | MINUSˆ) expr2)* ;
expr2 : expr3 ((TIMESˆ | DIVˆ) expr3)* ;
expr3

: ID
| "("! expr ")"!
| NUMBER
| MINUSˆ expr3
;

Figure 2: The parser for the simple langauge.

Rules in the parser begin with lowercase letters and contain
EBNF expressions (include Kleene closure ()*, zero-or-one
()?, one-or-more ()+ in addition to sequencing, choice, and
grouping) describing the grammar for each rule.

Unlike YACC or Bison, an ANTLR grammar needs operator
precedence and associativity stated implicitly. E.g., in this ex-
ample, the “if” “print” and assignment operators are at the low-
est precedence, + and − are next, then ∗ and /, and finally
atoms. This is perhaps the most awkward aspect of specifying
ANTLR grammars compared to other parser generators.

Many grammars are inherently ambiguous. A typical ex-
ample is the “dangling else” problem: there is confusion over
which “if” owns an “else” clause when if-then-else statements
nest. The usual solution is to attach the “else” to the nearest
“if,” and this parser is no exception. This is specified by set-
ting the “greedy” option in the optional “else” clause part of the
“if” rule. Normally, the generated code for parsing an optional
clause needs to decide whether to try to parse the optional clause
or continue one. It does this by looking at tokens that start the
optional clause as well as those that may follow it. An “else” to-
ken appears in both sets because the “expr” being parsed could
be the one after a “then”, which may have an “else” following
it. The greedy option makes the parser prefer the optional clause
over skipping it when such ambiguity arises.

ANTLR parsers can automatically generate ASTs; this exam-
ple takes advantage of this facility. By setting the buildAST
option true, by default every token becomes a sibling of the AST

being constructed, but annotations can refine this behavior. A !
following a token supresses the generation of an AST node (e.g.,
for punctuation such as parentheses and semicolons). A ˆ fol-
lowing a token makes it the root of a new subtree. This is used
in virtually every rule to impose structure on the AST.

By default, ANTLR builds ASTs where every node is an object
of the same class, but it has facilities for automatically building
more complicated ASTs.

3 The AST Walker

Once the parser has built the AST, it’s useless unless you do
something with it, such as traverse it to check static semantics,
transform it into a lower-level representation, or, in this case,
execute it in an interpretive style.

Figure 3 shows ANTLR rules for an AST walker that interprets
the AST. The rules look much like those for a parser, but they

class SimpWalker extends TreeParser;
{ java.util.Hashtable dict = new java.util.Hashtable(); }

file { int a; } : (a=expr)+ ;

expr returns [int r]
{ int a, b, c; r = 0; }
: #("if" a=pred:expr {

AST thenpart = pred.getNextSibling();
AST elsepart = thenpart.getNextSibling();
if (a != 0) r = expr(thenpart);
else if (elsepart != null) r = expr(elsepart);
else r = 0;

}
)

| #("print"
(s:STRING { System.out.println(#s.getText()); }
| a=expr { System.out.println(a); }))

| #(ASSIGN ID a=expr
{ dict.put(#ID.getText(), new Integer(a)); })

| #(PLUS a=expr b=expr { r = a + b; })
| #(MINUS a=expr b=expr { r = a - b; })
| #(TIMES a=expr b=expr { r = a * b; })
| #(DIV a=expr b=expr { r = a / b; })
| ID { if (!(dict.containsKey(#ID.getText())))

System.err.println("unrecognized: "+#ID.getText());
r = ((Integer) dict.get(#ID.getText())).intValue();

}
| NUMBER { r = Integer.parseInt(#NUMBER.getText(), 10); }
;

Figure 3: The AST walker for the simple language.

operate on trees. The syntax #(PLUS expr expr) means
“match a tree whose root is a PLUS token with two children that
match the expr rule.” No lookahead is used: the root of each tree
must be enough to disambiguate among multiple rules. Note
also that no precedence rules are necessary: the structure of the
AST already embodies them from parsing.

The rule for expr says it returns an integer—the value of the
expression—and the generated method contains local variables
a, b, and c. The actions simply evaluate any child expressions
then compute and return the value of the expression. Assign-
ment enters the value of its expression in a hash table indexed
by the name of the variable, and the rule for ID attempts to re-
trieve such an entry by searching on the text of the token—the
identifier itself. The number rule converts the text of its token—
the actual number—into a base-10 integer before returning it.

The rule for if is the most complicated because it must be
lazy, i.e., the then part should only be walked (i.e., evaluated) if
the predicate is true. So rather than writing the more obvious

#("if" a=expr b=expr {c = 0;} (c=expr)?
{ if (a != 0) r=b; else r=c; })

which would always evaluate both branches, the code shown
checks the predicate before deciding whether to walk the then
or else branch.

import antlr.CommonAST;
class Simp {

public static void main(String[] args) {
try {

SimpLexer l = new SimpLexer(System.in);
SimpParser p = new SimpParser(l);
p.file();
SimpWalker w = new SimpWalker();
w.file((CommonAST) p.getAST());

} catch (Exception e) {
System.err.println(e);

}}}

Figure 4: The driver for the simple langauge.

