
1 

 
 

 
 

SML 
(Spice Manipulation Language) 

 
 
 

Spencer Greenberg 
Michael Apap 
Robert Toth 
Ron Alleyne 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 

 

SPICE Manipulation Language 
 
 
Abstract 
 
SML (Temp Name) has been proposed as a means of simplifying SPICE coding. By 
developing a wrapper language that generates SPICE code, the developers of SML have 
given the typical engineer the power to easily manipulate cumbersome circuit 
configurations, while harnessing the full power of the latest SPICE engine technologies. 
SML can be done without the hassle of being distracted by the nuances of any one 
particular SPICE implementation.  
 
Introduction  
 
In any engineering discipline, simulation serves as an invaluable tool. The time and 
energy conserved in early development stages can be re-invested in the overall quality 
and optimization of the design. For electrical engineering, SPICE (Simulation Program 
with Integrated Circuit Emphasis) serves as a computer program designed to assist with 
the simulation of analog electronic circuits. It has become the industrial standard for such 
experimentation. Early advancement in this area of software engineering saw the 
development of CANCER (Computer Analysis of Non-Linear Circuits Excluding 
Radiation) by Ron Roher of the University of California – Berkeley and three other 
predecessors of modern SPICE variants in the 1970s. In the years since, newer software 
releases have added greater functionally by introducing support for dynamic and semi-
conductor circuit elements and improved analysis.      
 
In order to use these products efficiently, designers must be familiar with the general 
“nodal” language that is used to create “net-lists” that represent circuits. In addition to 
being very cryptic, such languages can also vary from one particular SPICE 
implementation to another. Furthermore, the limitations of the language can make 
dynamic circuit configuration and manipulation very time-consuming.   
 
SML serves as an interface between the designer’s circuit schematic and the subsequent 
“netlist” that will be pumped into the SPICE translator. It hides the complexity and the 
implementation-dependent details of any particular SPICE version. It provides portability 
that allows compliant code to be generated into any particular SPICE dialect. It also 
provides greater programming functionality to allow for easier manipulation of circuit 
elements. Furthermore, the readability of the language makes it easier for engineers to 
collude on simulation parameters and results without spending a lot of time trying to 
parse a fellow designer’s net-list. This language also serves as a viable entry point for 
further research into the development of high-level languages to model all types of 
biological and industrial node-based networks.   
 
 
 



3 

 
 
 
Background 

What else is there to know about SPICE?  SPICE simulation files are created by defining 
all nodes, and the circuit elements between each node.  There are many variants of SPICE 
available to engineers.  P-SPICE is a PC version commonly used by many students as a 
tool to create circuits, whereas H-SPICE is a UNIX based version.  SPICE offers 
different analyses of circuits such as: AC Analysis, DC Analysis, and Transient Analysis.  
Below is a sample of circuit and the Spice code that would generate it:  

 
 

 
 

Spice Code: 

Vin 1 0 3 

R1 1 2 10 

R2 2 0 20 

.END 

As you can see, the code above is not explanatory unless you understand SPICE 
programming.  The syntax is very structurally and without memorizing what goes where, 
even the code above will have no meaning to someone who has done SPICE 
programming.  Thus SML will offer a simpler and more intuitive approach to simulating 
circuits by creating a wrapper for SPICE programming. 
 
 
 
 



4 

Language Properties 
 
1)  The most important property of SML is the ability to intuitively define a circuit.  The 
core structure is the List object.  By using this abstract List objected different components 
can be added and connected, attendant values can be set and initial conditions can be 
stipulated.  

 
2) Every object has global scope, so no matter where an object is created its name can be 
referred to from anywhere in the program.  
 
3) Comments are indicated with “//”. 
 
4) Lists are 1-indexed, so L[1] gives the first element in list L. 
 
5) Valid object types are as follows: 
 

float : a floating point value 
int : an integer value 
List : a list of objects 
Res : a resistor 
Cap : a capictor 
Ind : an inductor 
MI : a mutual inductor  
CS : a current source 
VCC : a voltage controlled current source 
VS : a voltage source 
VCV : a voltage controlled voltage source 

 
Language Operators 

 
typespec name  : creates an object of type typespec called name 
 
   Example Res r 
 
obj1 = obj2 : sets obj1 to a duplicate of obj2 as long as they are 

of the same type 
 
   Example Res r,r2 
     r.resistance=5  
     r=r2 
 
obj1 == obj2 : returns 1 if obj1 is of the same type and has all the 

same properties as obj2. For lists, this means that 
the nth element of each list must have the same 
properties for all n. 

 



5 

   Example r1==r2 
 
 
{obj1, obj2, obj3} : creates a list object containing obj1, obj2 and obj3. 

Can include any number of objects 
    
    Example List Circuit1 = {Res r,Cap c} 
     List caps = {Cap c1,c2,c3} 
 
 
typespec[n] :creates a list object containing n objects of type 

typespec. 
 
   Example  List L = Res[5] 
 
 
list1 U  list2 :creates a list which contains the elements of list2 

appended to list1 
 
   Example     List L = Res[5] U {Cap c,Res r}  
 
� :creates a physical connection between 2 objects 

 
Example    r1(+)->r2(-) 
 

  Parallel(List L) :connects the objects in List L in parallel.  
 
  Series(List L)  :connects the objects in List L in series.   
   
Properties of circuit objects 
 

All circuit components have negative and positive terminals in addition to other 
properties. 

 
obj1(+) :returns an object representing the positive terminal of obj1 
obj1(-)  :returns an object representing the negative terminal of obj1 
 

The basic components of any circuit have inherent properties associated with it, 
for example: 
 

Res res1 
res1.resistance = 3 

 
  
 
 



6 

 
SML Sample Circuit 
 

 
 
 Res r1,r2 
 VS Vin 
 Vin.voltage=3 
 r1.resistance=10 
 r2.resistance=20 
 Vin(+)->r1(-) 
 r1(+)->r2(-) 
 r2(+)->Vin(-) 
 
 
Sample Code Explained 
 

First we create 2 resistors (r1,r2) and a voltage source (Vin).  Next, we set the 
voltage and the resistance for these components.  The last 3 lines of code connect 
the components into a circuit. 

 
References 
 

[1]  UNIVERSITY of PENNSYLVANIA-DEPARTMENT OF ELECTRICAL ENGINEERING  
   SPICE - A Brief Overview  

http://www.seas.upenn.edu/~jan/spice/spice.overview.html 
 

[2] SPICE TUTORIAL 
http://www.brunel.ac.uk/~eestmba/usergS.html 

 
[3] SPICE HISTORY 

http://www.ecircuitcenter.com/SpiceTopics/History.htm 


