EZQL: Simplifying SQL queries

Syed Igbal Ahmad
Bilal Bhatti



EZQL: Language Overview
1.1 Introduction

EZQL was designed to ease database programming in Java and specifically to
automatically map relational data to Java Objects. The language will use syntax and
keywords familiar to a database designer or administrator, allow him/her to easily create
programs. These programs will generate Objects and List of Objects, as needed which the
end programmer can use in his programs. Further the .ezql files will be translated to
standard Java.

1.2 Why use Java

These programs will then compile into Java, allowing for ease of use by Java Developers.
Java provides a variety of benefits including security, machine portability, network aware,
etc. Further, there is corporate commitment to use Java for enterprise application
development, especially for database driven applications, and standard Java architecture
supports a model of separation of personnel roles and design tiers. We could support
other languages, and are not necessarily locked into Java, but for the immediate time Java
is the target language.

For more information about Java please see the Java Whitepaper at
http://java.sun.com/docs/overviews/java/java-overview-1.html

1.3 Language Overview

As stated above, the EZQL will allow the database developer to use simple syntax to
write database logic. He will be able to receive input arguments from a Java application
and respond to them as needed. The language will support control flow, such as if
statements and for loops. It will also have basic variable declarations. This will allow for
logic prior to running the query.

Further writing the query will not contain any complex JDBC logic. Only a query needs
to be specified. The Java objects will be automatically generated based on the fields
specified in the query. This is ideal for taking relations and making them available to
Java applications, and eliminates the need for any expensive O-R tools or overly
cumbersome frameworks with descriptor files.

1.4 Main Language Features

The main language features are described below.

1.4.1 Loading a Table

The language will support the retrieving of attributes from a single table. The example

below shows the required syntax to return the attributes a,b,c from table role. The Java
object MyRole will be generated with getters and setters.



In addition a MyRoleDAO class with a static method getByld will be generated to allow
for the loading of a MyRole by Id. If more than one row is returned then a Java exception
will be thrown. All generated methods within the DAO will throw a standard
SQLException with a message explaining what happened.

table role as MyRole {
row getByld(int id p) {
//No need for quotes to escape. Just keep searching until the
//semicolon
return select a, b, ¢ from user where id = :id_p;

}

The declaration in the beginning indicates a table role is being accessed and a class
MyRole should be generated. The MyRole class will have three elements based on the
data.

We plan to support two return data types, object and collection. A collection will be used
to indicate the return type contains more than one row of data.

1.4.2 Variables, Control Flow

We want to support standard language features including the use of variables, if
statements and for loops.

An if statement can be used to perform conditional checks. In this example it is being
used to determine if a database trip should be made. In the generated code, null will be
returned.

table role as MyRole {
row getByld(int id p) {

if (id p<0) {
return;
h

return select a, b, ¢ where id = :id_p;

}

The name of the file on disk should be MyRole.esql, otherwise a compiler error will be
generated.

In this example, a simple calculation is performed before the query is returned back.
table grades as StudentGrades {

//get classes where the grade is greater than the average of two exams.
row getClass(int examl, int exam?2) {



int avg = (examl+exam2)/2;
return select class from grades where grade >= :avg;

1.4.3 Packaging The Generated Result
package com.xyz.admin;

table role as MyRole {
row getByld(int id_p) {

if (id p<0){
return;
}

return select a, b, ¢ where id = :id_p;

}

A package statement should be specified for each file declaration, so that the generated
Java code will have a package. If no package is specified then the default package is
assumed.

1.4.4 Writing Arbitrary queries

view MyReport {
collection doSomething() {
return select tab_a.a, tab_b.b, tab_b. ¢ from tab_a, tab b where
tab_a.id=tab_b.id;

}

The view structure will allow for writing any arbitrary query, with the same basic
language features available, such as passing arguments, using if statements, for loops, etc.

1.4.5 Advanced Features

We plan to support a variety of advanced features, which will allow the database
developer to write a small amount of code to load out data.

One example is the relationship:
relationship user roles {
cardinality one user on userid;
cardinality many role on idnumber;

}

The relationship can be used in queries easily load one-many or even many-many data



elements.

Another example is the leveraging of primary keys. By having a language keyword,
primarykey we can allow the simple loading back of a whole table by the primary key
without writing any sql.

1.4.6 Some Final Notes

A properties file will have to be available specifying how to obtain a connection to the
database. This file will also contain a mapping of Java types to database types. This file
will need to be available to compiler in order to proceed with compiling of .ezql files.

1.5 Related work

A variety of frameworks have been created to handle database access, such as EJB,
Hibernate, JDO. Our main objective currently is not to replace these frameworks, rather
provide a solution that complements them. We intend to focus on being able to retrieve
data from a database in an ad hoc manner and not support all of CRUD operations.
Actually we will initially only support the SELECT statements.

The impetus for this scripting language is the fact that all of the above-mentioned
frameworks are fairly complex. They require multiple artifacts that need to be maintained.
In addition they are often overkill or too restrictive, such as when complex queries are
involved. In which case almost always it is recommend writing custom SQL for
enhancing performance or simply to bypass the restrictions imposed by these frameworks.

In specific our solution will differ from the above in the following areas:
* No need to specify metadata information in the form of XML or other formats
* Be able execute arbitrary SELECT statements with joins between multiple tables
* Retrieve rows from a single table or by a complex query as standard POJOs
* To programmatically support caching of query results
* Provide basic flow control to manipulate the results

We hope to provide a simpler mechanism for data access with basic flow control and
error handling. We hope to accomplish this by providing a simpler grammar, which will
be translated to Java code, backed by JDBC.



