

DEVice Interface Language (DEVIL)

Boklyn Wong (bw2007@cs.columbia.edu)
Pranay Wilson Tigga/Team Leader (pt2116@cs.columbia.edu)

Vishal Kumar Singh (vs2140@columbia.edu)
Hye Seon Yi (hsy2105@cs.columbia.edu)

Chapter 1: Introduction

1.1 Introduction:

 DEVIL is a device configuration language that would generate a script or an
executable which when run can perform the actual configuration on the device as
specified by DEVIL.
 Devil is an Easy to Use, Platform independent, Reusable and Extensible.

1.2 Background:

 Different devices/servers from different vendors are configured in different ways
which are generally specific to each individual device. Network administrators need to
know every specific detail about the device before they can configure it properly. A
network admin capable of configuring a Cisco router might not be able to properly
configure a NEC router and need to learn different configuration interfaces for
configuring devices from different vendors. This increases the possibility of error and
increases the time it takes for deployment and configuration of network. There is
currently no network application that would be able to configure devices across vendors
in a generic way. Moreover, different devices might follow different configuration
protocols, which make it difficult to develop a common utility to work across different
platforms. For example, a device running Linux operating system would be configured
differently than devices running windows.

1.3 Motivation:

 The DEVIL has far-reaching implications and applications in today's world of
diverse platforms and devices. One such application would be in the field of Network
Management for device configuration. Future generations of Network Administrators
would not longer have to be familiar intuitively with all aspects of devices in his/her
network. With the creation of DEVIL, A Linux network admin would be able to manage
as well as maintain a Window’s based network. Further applications of DEVIL could be
in the field of personal computing. DEVIL could possibly grow into a scheduling
language.

1.4 Related Work:

 There has been much attempt to standardize the configuration mechanism which
resulted in different interfaces and protocols for configuration e.g. SNMP, SOAP and
Web services are being used for device configuration. This has not helped to alleviate the
problem but wound up aggravating it, by creating a need to learn more interfaces and
support them. Other work has been done by Netconf Inetrnet Engineering Task force
(IETF) working group which proposes a request response based mechanism to configure
devices. Our group found out that the main issue of different ways of configuration can
be solved by separating the user from device specifics and providing a vendor specific

compiler which generates the output code whose target is the vendor’s device. The
compiler is provided by vendor and he understands the internals of device. This
disassociates user from multiplicity of device configuration techniques and provides him
with a single and easy to use interface in the form of our language.

1.5 Goals:

 High Level: Users who uses DEVIL would never have to know or understand the
lines of code that went into producing the output that performs his/her desired task.

 Syntactically Intuitive: One of the Goals of the DEVIL language is that users who
use DEVIL would not need any prior knowledge of the device to be configured but
simply an understanding of what he would like the device to perform. In other words
DEVIL must be Easy to Use.

 Portable: Since DEVIL is text based and written in XML, it is capable of
generating the target script for any device. This fact makes DEVIL a highly portable
language. DEVIL is analogous to Java in the sense that compilers for either language
generate platform specific code.

1.6 Features:

 Template Based: To handle device idiosyncrasies i.e. diverse commands across
different devices, we will provide a template based mechanism to generate commands
and codes for those commands on devices which are not directly supported by language.
Moreover, a device provider can provide many more templates.

 Context Less and Context Aware: There are certain kind of configurations which
are state-full and others are stateless. A state full configuration has a notion of context
whereas a stateless configuration can be context less. An example of a context less
configuration command is setting IP address and hostname in Linux where there is no
dependency on the order of commands being executed, whereas a context aware case of
configuration is a router configuration where global commands override local commands
e.g. Blocking ICMP packet can be global and Allowing can be local to interface so the
context of command being invoked is important.

1.7 Sample Code:

Sample Input program

<?xml version="1.0" encoding="UTF-8"?>
<Device >
 <informational>
 <type> Router <type/>
 <platform> Linux <platform/>
 <version> 2.6 <version/>

 <family> Core <device/n>
 <informational/>
 <configuration>

 <hostname > PLTLabTestMachine </hostname>

 <command template="1">ifconfig eth0:0 ipaddress 10.2.2.14 netmask 255.255.255.0
broadcast 192.168.10.55 </command>
 <createcommand>
 <command>ifconfig</command>
 <args>
 <eth0:1>
 <ipaddress> 10.12.12.14 <ipaddress/>
 <netmask> 255.255.255.0 <netmask/>
 <eth0:1/>
 <args/>
 </createcommand>
 <!-- WE CAN DEFINE COMMAND TEMPLATES ALSO and refer to replace
them-->
 <!-- route add -host XXX.XXX.XXX.XXX dev devicename-->

 <createcommand>
 <command>route add</command>
 <args>
 <host> 192.168.10.12</host>
 <dev> eth0</dev>
 </args>
 <args>
 <host> 192.168.11.12</host>
 <dev> eth0</dev>
 </args>
 <createcwouldommand/>
 </configuration>
 <Device />

INTERPRETATION

 The above input program is parsed and interpreted to generate the following
output. For example inside the informational tag <informational> the user provides
information about the platform and other details which will be used by translator to make
a decision in order to generate the target program. E.g. if the user specifies Linux as
platform the output generated can be shell script as the one given below. The
configuration tag holds configuration details and contains information which enables the
translator to generate code automatically.

OUTPUT

 Output (Target Script)=> output.sh

 hostname PLTLabTestMachine
 ifconfig eth0:0 ipaddress 10.2.2.14 netmask 2
 hostname mycomputer.mynetwork
 92.168.10.12 55.255.255.0 broadcast 192.168.10.55

I fconfig eth0:1 10.12.12.14 netmask 255.255.255.0 broadcast
192.168.10.255

 route add -host 192.168.10.12 dev eth0
 route add -host 192.168.11.11 dev eth0

