M RRoboto:

Macro Record Robot Language
Final Report

Authors:

Adam Marczyk (alm2126@columbia.edu)
Hema Krishnan (hk2230@columbia.edu)
Jason Kopylec (jkk2106@columbia.edu)

Tableof Contents

LT TN oF=T o= USSP PR PROR 3
= 1o o 01U] o 3
EXIStiNg TECNNOIOGIES.c.viiiiieiie ettt ne e nre e 4
NP2 (V7= B2 11T Lo oL | PR 5
Putting the PIeCeS TOQELNEN......cc.oce e 6
What it LOOKS LiKE—EXamPIe Lcooieeieeeeecece et 6
Artificial IntelligenCce—EXamMPIE 2.......oo i 6
LanQUAgE TOOIS ...ttt bbb 8
(@] /0] o1 = SRS 8
SUMIMIBIY ..ttt ettt e st et e s se e e be e eae e e se e sae e e abeeameeeseesmneeabeesnseaseesaneenns 10

LangUAagE TULOM @I ..ottt 11

Language ReferenCe ManuUalcccoeeveeieiieseee e 14
File NamMeE CONVENTIONS.....coc.iiiiiiiieeie ettt s s sa et be b saeenes 14
THEMAIN BIOCK ..ottt st nne s 14
SEALEMIENTS ... e e n e nr e 15
COMIMEBNES ...ttt e et e be e s e e e b e e sar e e neeanneeaneesmneenneeannas 15
RESENVE WOTTUS ...ttt ettt esn e e nns 16
RV =T o] =SSP 16
S Lol L= = S 17
L a10S o < TSP P R TT SR OPRRTPRPPPIN 18
D1 o = g1 o o SO 18
y S Lo 0] 101 0 OSSP 18
L@ 01 = | (0] TSR 18
=00 o [o SR 19
FIOW CONEI Ol .t 19
W HITE L OOPS ...ttt ettt ettt et et e s e s e e e e ae e besnsesreesneennesneesens 21
User-Defined ProCRAUI ES........coiiiieeiesieeieeie ettt nee e nes 21
ATGUMENES. ... e e n e s e e ne e e mn e e nne e nmneenneesnneennee s 21
RELUINN VAIUES......eiieieee sttt st 22
(] o T =T A 0 Lo] PR 23

PrOJECE PLaN ... 24
Team ReSPONSIDIITIES.......cceiieececce e 24
Programming StYI€ GUITE.......ccuei ittt st 24
ProjeCt TIMEIINE ..o e 25
Softwar e Development ENVIFONMENTcccovvieiieieeesierie e s 25
0= o o SR 26

AT ChITECTUI 8l DESIGN ...ttt 27

LI S = T SRS 28

L ESSONS L EAINEU.iviiieiieieie ettt st bbbttt ettt sa b b ne e nes 33

APPENAIX A: TESE COUR ..ottt e et sae e e e sne e e 36

ApPPendix B: ANTLR COUEooiiiieiiriereeee e 38

APPENiX C: JAVA COUEccueeeeciieie ettt e e aesseesreeaeeneenaens 49

AppPendixX D: ROBOLOXY ...ttt et nnee s 73

Whitepaper

Macro Record Robot Language (MRRoboto) places in the hands of the programmer a
powerful tool for controlling GUI based operating systems. By simulating the actions of
a user, one can test interactive applications and automate repetitive tasks with ease.
MRRaoboto provides a smple script-style interface, while leveraging the srengths of the
Java programming environment. This paper proposes a language that:

1. Contains a simple interface where users can easily create scripts that mimic
keyboard and mouse input to automate repetitive tasks

2. Serves to model virtual user input using common computer vision, artificial
intelligence and machine learning techniques

3. Interfaces with Java to utilize the rich language libraries without restricting the
applications to be Java-specific.

Background

The first programs to allow rea-time user interaction came shortly after the invention of
the Video Display Termina in the mid-1960's which incorporated a television style
monitor with an electric typewriter [Bellis]. In the years following, real-time interactive
operating systems were being developed, culminating in the introduction of UNIX in
1970 [Milo]. Along with the ability to interact with the user via the command line came
tools for automating user input. Shell scripting and 1O redirection provide the
groundwork for application testing and automation of repetitive tasks and have become
invaluable programmer tools.

The Graphical User Interface (GUI) has become a staple of the modern, mainstream
operating system since its inception in the 1979 Macintosh [Tuck]. With the proliferation
of personal computing and the World Wide Web, user interaction based on keyboard and
mouse (or similar pointing devices) input is a main function of modern operating
systems. Unfortunately, there is alack of simple scripting tools for automating this type
of interaction. Thereis no widely used batch/script type language to easily automate user
functions as with command line operating systems. Usually knowledge of large and
complex operating system APl is required to manipulate individua screen elemerts
which are bulky and counterintuitive. User interaction is much easier when thought of in
terms of mouse and keyboard commands.

Java provides an interface, albeit a clumsy one, for modeling and performing user input
in a more natural way. By streamlining the Java model and providing a simple script-
style interface, programmers would have an idea tool for testing their interactive
graphical applications and be able to automate tasks in a way analogous to UNIX shell
scripts or MSDOS batch files.

Existing Technologies

Current programming languages, applications and operating systems do provide
mechanisms for manipulating the user desktop and applications, but each comes with
inherent restrictions that MRRoboto serves to correct. To outline afew examples:

Microsoft Windows API

Microsoft has built into its latest generation operating systems (Win 2k, XP) a multitude
of API to control and handle every aspect of the kernel and windowing system. Windows
allows scripts and applications to manipulate individual components of the user desktop.

The first problem with this APl is its sheer size. The Windows APl supports literally
thousands of procedures to control the desktop environment. It is quite easy to get
overwhelmed and lost in the Microsoft Developers Network website which holds the OS
and language specifications [MSDN.com].

Secondly, these APIs do not reflect accurately the actions of interactive users. For
example, to create a script that closes the currently open window, the script would require
you to know the name of that window, get a handle to it and then evoke a method that
closes the window and Kkills the process. What a user would do is simply move their
mouse over the “X” in the corner and click.

Traditional Batch Files

The traditional batch file is comprised of lists of commands that can are executed
sequentialy (with some limited flow control) as if the user had typed them one after
another. Thisis powerful because it is easy to automate repetitive tasks and the script can
use the same language as the user to communicate with the operating system.

The problem with traditional batch files is that they do not support multiple windows or
mouse actions. The only way that batch files can send input to the applications they
execute is through the command line or by redirecting data from standard input. This
limits mouse-driven applications or programs with specialized, non-sequentia input
controls, such as web pages.

JUNIT

As large scale open source project, the sole focus of JUNIT is to automate application
and code testing. In particular, the module JFCUnit was built to test graphical
applications by providing input from a virtual test user. It servesto “start the application
and then interact with it, typing in some text and maybe pressing some buttons.”
[Hammell]

JUNIT supplies the Java applications programmer with a plethora of tools for running
tests on code, but this is aso its limitation. It was developed to test only Java
applications, and runs in the same thread as the application, so if the application fails, so
does the user interactivity [Clark]. This does not at all supply portability to general
problems of testing application, modeling user artificial intelligence, or automating
regular windowing tasks.

Stand Alone Applications

Searching for “Windows Macro” within Download.com displays a number of
applications such as Macro Express, Workspace Macro and Phantom Sidekick to name a
few. The main goa of these applications is to automate repetitive tasks. Often this is
done by pressing a “record” key and then typing and clicking the procedure and pressing
“stop” when completed.

These applications have their share of problems though. The first is the representation of
the macro once it has been recorded. Some applications represent the macro in terms of
Windows API, which suffers from the same hindrances of the API itself, namely its huge
size and not modeling user input as a sequence of keystrokes and mouse actions.

Applications that do not translate into Windows API either compile directly into machine
code or a proprietary intermediary. This is problematic because if a small part of a large
repetitive task changes, then the entire macro must be recorded again from the beginning.

In addition to these limitations, stand-alone apps are more difficult, if not impossible to

utilize as virtual user interfaces to generate input on the fly, or incorporate into larger
Java applications.

Java.awt.Robot

Java APl provides a class for manipulating the user interface in a much more user
oriented fashion. It includes methods for moving the mouse to a specific coordinate on
the screen, mouse clicks, keyboard input and some rudimentary methods for retrieving
the screen contents [“Robot”]. The java.awt.Robot class can work either within or
outside the scope of java applications. The Java Robot requires no user knowledge of the
underlying operating system specifics or API.

The downside to the Java implementation is that is a bit clumsy. There are a number of
places where in addition to needing to know about Object-Oriented and basic Java
progranming, there are specia constants and APl necessary for forming the expected
output results. For example, each keyboard character must be pressed and released in
separate calls ard isindexed by a special constant [Baldwin]. Thisis quite a hasse if you
want to automatically type the text “ http://www.google.com” into a web browser.

Putting the Pieces T ogether

Macro Record Robot Language (MRRoboto) is a programming language that leverages
the assets from the following sources:

1. The ease of making batch files
2. The power of Java (and particularly the Java.awt.Robot class)
3. User ability to interact with environment via keyboard, mouse and monitor

Each of these tools on its own has limitations, but by modeling a language that puts them
together, a complete array of applications both trivial and complex can be devel oped with
flexibility and ease. The audience for this language spans from the casual user who
wants to check email faster without a lot of typing and clicking to the machine learning or
computer vision researcher who wants to model user interaction with Windows to
programmers who want automate the testing of their GUIs.

What it LooksLike—Example 1

A simple application that automates a repeated user function would typically look like a
number of mouse clicks and keystrokes. For example, let’'s say we wanted to write a
script that checks Yahoo! email. Code would probably look something like the
following:

CheckYahooMai | . nrr

noveAndCl i ck(20, 755) **click Internet Explorer icon

wai t (10000) **wait 10, 000nms (10 sec) for the page to | oad
type(“usernane”) **type Yahoo nmil usernane

type(“| TAB| nypassword”)**H t tab-key and ny Yahoo password

type(“| TAB| | ENTER]| ") **Hi t tab-key again and hit enter

After compiling and running the code, one should be taken directly to their Yahoo! Mail
inbox.

Artificial Intelligence — Example 2

Applications that act as intelligent agents controlling a desktop can become quite
complex, bu we can aso show a simple application that give their human counterparts
some real competition.

As an example, lets create a script that plays a simple game that imitates a shooting range
(see Fig. 1) [“Shooting”]. The user scores a point for each bull’ s-eye that is “shot” by
pressing the mouse button on it. A point is deducted for every misfire. The difficult part
of the game is that it contains virtual human movement, so the gun sight shifts back and
forth and shooting causes recoil that loses aim as a human would. The user must try to
shoot as fast as possible once the crosshairs are over the bull’ s-eye.

T shantng Hamge - Flash earees :froe online games - Facrossh Insemit: Expho o (= |

me E# jem fperm Dok ek Gogie» <] B i =17
Aot | @] httz oo, 1480l complay_Rush s pre?D = FL o] By
Eoex = L3 - [x] | 2]] s et g e) L

T =y ¥ T =]
i ardied gamed ard reslalbe oo Flash Camet. ©ree acopas Par a8 sad rels s ulec e gt pegpaind.

Flastlu Gamis Heme = Shooling Range |I0=701) Dowibading 420 KB .

Bl

Fig. 1 Shooting Range Game.

We want to generate a program that plays the game with a decent level of skill which can
be done with the following MRRoboto program:

Shoot er Ganme. nrr

**Assune that the shooter game w ndow has been opened and started
i nt nunShot s
nunsShot s=22 **User gets 22 shots at the target

**Try to click on the bull’s-eye for each shot

int i
for i, 1 to nunShots

click(350, 500) ** click in the mddle of the bullseye

del ay(2000) **2sec del ay between shots to allow for recoil
end

We see here the program executes the same actions that an ideal user playing the game
would. Someone new to the game could definitely increase their high scores by letting
MRRoboto play for them.

L anguage Tools

To make the language more expressive than ssimply “click here, click here, type here, etc”
a number of programming language primitives and structures will be incorporated to
facilitate solving a broad array of programming problems. These include:

Data Types

Support for data types such as integersand strings will be included as basic programming
tools. In addition, there will be primitives for dealing with display elements, such as
retrieving a bitmap of the screen which can be compared to other bitmaps. This provides
the groundwork for designing reactive components and run-time error checking.

Flow Control
Flow control structures such as for-loops and if-then statements will be in place to work

with the primitive data types for conditional flow control. Procedures and functions with
syntax similar to java will aso be supported to facilitate program segmentation.

Screen Output

Taking feedback from the display opens up a complex set of computer vision issues that
may not be solved in a project this size, but the aim is to incorporate some primitive
methods for retrieving pixel colorsto illustrate the possibilities of using display feedback
to drive automation and/or artificial intelligence applications.

Embedded Java

To utilize the far reaching power of Java without muddying the syntax of the language,
native Java code can be placed within brackets anywhere in the code. This opens the
door for advanced programmers to utilize this simple scripting language as a core part of
larger Java development projects.

Compiler

The MRRoboto programs are compiled into native Java code that can then be compiled
and run as normal Java programs. Many similar languages are interpreted, but by
compiling into Java (and then into Java byte code) the scripts can be fully incorporated
seamlessly into larger Java programs. The MRRoboto program is parsed and translated
by a custom procedure developed using ANTLR and Java. See Figure 2 for the
compilation process.

Fig. 2 MRRoboto Compilation Process

User Progranr
A
ANTLR Lexer \
! ANTLR Error Reporting
ANTLR Parser 7
A
ANTLR Tree Parser Symbol Table

Build Symbol Table

A

ANTLR Tree Parsex Custom Error Reporting
Code Generator

A

Java Compiler (javac)

A

Java Error Reporting

ANTLR Lexer/Parser

Providing custom programming tools requires defining a syntactic grammar and semantic
rules. ANTLR provides the tools to easily create lexical analyzers, parsers and other
compiler components based on defined grammars [Parr]. MRRoboto will use ANTLR to
develop the front-end syntax checking required prior to the conversion to native Java.
ANTLR will also be used to report custom errors back to the user about syntactic or
semantic errors. Any native Java in the source code is ignored.

Trangdation to Native Java

Once the code is deemed “valid” by the ANTLR parser, a module will create a Java
template class that initializes a Java.awt.Robot instance. The M RRoboto commands are
trandated into java code and procedures statement-by-statement. This class can then be
compiled into aworking java program. Any errors in Java from the source code would
be indicated during compilation.

Summary

MRRoboto takes advantages of a script style interface while maintaining the full features
of alarge scale programming language like Java to provide what other tools have falen
short of in terms of providing avirtua user interface. The language can be used to easily
model and solve a multitude of problems from process automation to artificial
intelligence.

L anguage Tutorial

Macro Record Robot is a script- like language that can allow for the automation of
repetitive tasks. It is fairly easy to write a program using MRRoboto. Before we start to
show you, here's how you use the compiler and execute a program. Enter the following at
any command prompt.

> java MRRoboto <filename.mrr>

The filename has to have the .mrr extension in order for the compiler to work. This
command trandates the MRRoboto code into java bytecode and outputs the file into one
of the same name. All that is left to do isto compile this code using the java compiler and
then running the executable.

> javac <filename.java>
> java <filename>

Developing with MRRoboto
Now that you are familiar with how the compiler works, let us progress to learning how
to write a file using the MRRoboto language.

HelloWorld
The following is the canonical first program and prints “Hello World” to the console.

helloworld.mrr

** This is a sinple MRRoboto Program

print(“Hello World!")

Checking Yahoo Mail

If you had a Y ahoo! Mail account and wanted to automate the process of checking your
email, you can create afile to do so using any available text editor. In fact, let us put the
following in afile called CheckMail.mrr and see how the process works. Y ou may have
to modify the screen coordinates to match your screen resolution and icon placement, but
this can be done easily by using the RobotoXY tool (see Appendix D).

CheckMail.mrr

** Sanpl e programto check yahoo mmai
noveAndDoubl eCl i ck(31, 240) **click Internet Explorer icon

wai t (10000) **wait 10 secs for page to | oad
nmoveAndCl i ck(43, 316) **click Yahoo! Mail [|ink

wai t (10000) **wait 10 secs for the page to | oad
type(" your usernane") **type Yahoo nmil usernane

type("| TAB| your password") **Hit tab-key and nmy Yahoo password

| type("| ENTER| ") **Hi t tab-key again and hit enter

The first line is your basic comment to indicate what the program below does. Asyou
may have noticed, comments start with two asterix symbols and they are single line
comments only. Lines 2-8 illustrate the usage of library functions that perform the actions
necessary to start a browser window and log into Yahoo! Mail. The numbers that have
been passed into the moveAndDoubleClick() and moveAndClick() methods are the
coordinates of the Internet Explorer icon on the desktop and the link to Y ahoo! Mail in
the browser respectively.

These coordinates were determined by using a program called RobotoXY', a script that
returns the position of the mouse, at any given time, on the screen. Using these
coordinates you can create any number of files that will open or take care of some of the
most mundane tasks.

If you follow the instructions above regarding how to use to the compiler, then the .mrr
file above will be trandated into one called CheckMail.java. Run the java compiler on
this file and execute the resulting program.

The following example extends our first Hello World program by showing off the
keyboard control capabilities by opening a Notepad window and typing “Hello World’
into it ten times. It will show you how loop constructs and functions work in MRRaoboto,
along with an important library function. The language is not hard to understand even if
you are a novice at programming. It provides you with a better grasp on the constructs
used in higher level languages. Try entering the following in a file named
Helloworld.mrr.

Helloworld.mrr

1 **Opens atext editor and prints Hello, World for a set number of times

2 openNotepad() **procedure call

3 procedure openNotepad() ** procedure declaration

4, exec("notepad.exe™) **|ibrary function used to open notepad
5. wait(1000) **wait for 1 sec

6. inti

8 fori, ito 20 step2

9. type("Hello, World") **types Hello, World in open file
10. type("|ENTER]") **Hit the [Enter] key

11. end **end for loop

12. end **end procedure

Line 1 marks a comment, as seen before. Line 2 indicates how a procedure should be
caled. This call can be made either before or after the procedure declaration. Lines 3-12
illustrates a procedure declaration. Line 4 contains alibrary call that should be quite
useful. The exec(cmd) method starts any program that you like without having to start
command prompt first. In this case, Notepad is the program that the exec function starts.
Lines 6-7 indicate the necessary variable declarations for the ‘for loop'.

Unlike Java, variable declarations cannot be made as one writes the program. These
variables need to be declared and initialized separately. Lines 8-10 indicate the workings
of the ‘for loop’. If you look at the for statement, you will notice two keywords — to and
step. The word ‘to’ indicates the range that needs to be covered and the word * step’
indicates how much the variable i will be incremented. This word is optional. If it is not
included, then the default increment is 1. This can also be implemented using a while
loop. The reserved word ‘end’ is required to finish both the loop construct and the

procedure declaration. For additional information on loops and functions, seethe
Language Reference Manual.

L anguage Reference Manual

The Macro Record Robot Language (MRRoboto) places in the hands of the programmer
a powerful tool for controlling GUI-based operating systems. By simulating the actions
of a user, one can test interactive applications, automate repetitive tasks with ease, and set
one's computer to perform tasks at scheduled times when no user can be at the keyboard.
MRRoboto provides a smple script-style API to mimic keyboard and mouse input, and
utilizes Javas rich language libraries without requiring specific skill in programming Java
syntax.

This manual outlines the language syntax and semantics for creating MRRoboto
programs and compilers. Wherever possible, context-free grammars have been included
to precisely define the syntactic constructs. The overall flavor of the language is similar
to scripting languages such as Unix shell scripts, with additional power and flexibility
added through the use of Java-like control constructs.

File Name Conventions

MRRoboto programs should be named with the extension .mmr. The file name will
become the name of the Java class that is created, so it should take the form of an
identifier. For example, the file TestProgram.mmr compiles into a Java file
TestProgram.java.

The Main Block

A program in the MRRoboto language has one main block of code, consisting of multiple
statements each on its own line, that is run each time that program runs and that is the
first thing to be executed each time that program runs (analogous to the main() function
in aprogram in C or Java). The main block is followed by one blank line and then one or
more function definitions that may be invoked by the main block during its execution.

Main Block Grammar

program
: mai n_bl ock (procedure)* EOF!

mai n_bl ock
©o(stm)+

Statements

A block of code in the MRRoboto language is made up of one or more statements, each
followed by a new line character. A statement may be any of the following: a comment,
native java code, a variable declaration or assignment, a conditional statement, a loop, or
an expression incorporating one or more operators.

Expression Grammar

stnt

JAVA

COVMENT

var _decl aration
assi gnnent
procedure_cal
condi tiona
for_l oop

whi | e_I oop
directive
NEW LI NE

Comments

Comments are statements inserted by the programmer to more clearly explain the
operation of the program. They are considered part of the program source code and are
maintained in the generated java code to aid in ease of understanding the compiled java
code. Comments are marked by a double asterisk ("**") at the beginning of a line and
extend through the end of that line. Multiple-line comments may be created by starting
multiple successive lines with this delimiter.

Comment Grammar

comment

"k ok ()*

|dentifiers

Identifiers are defined as the names of functions, variables, or class files. In this language,
an identifier must start with an alphabetic character followed by any number (up to Java's
maximum) of letters, digits or the underscore character, ' '. Reserved words are illegal as
identifiers.

Examples of Legal Identifiers: abc123, x, i_count, tnp
Examples of lllegal Identifiers: abc&c, _ac2, 1stP, end

| dentifier Grammar

identifier
| etter (al phanuneric | "_")*

al phanuneric
letter | digit

letter

[A- Za- 7]
digit

[0-9]

Reserved Words

The following are reserved as keywords in the language. They may not be used as
identifiers. Keywords in Java are also illegal identifiers, but they are not listed here.

MRRoboto Reserved Words

nmouseMbve click
nmoveAndd i ck rightdick
noveAndRi ght C i ck wai t

set Wi t type

press hol d

rel ease rel easeAl |
exec pri nt
printlnt substring

| ength pc

to step

end procedure
error nT Robot oLi brary
br eak conti nue
return for

whi | e

These reserved words represent either built-in library functions, data types or control
flow keywords; their exact functions will be discussed in detail below.

Variables

Variables are mutable, dynamically valued blocks of memory that store values used by
the program during its execution. All variables must be declared and assigned a value
before being used; variable names are identifiers and must be distinct. MRRoboto

supports two built-in data types for variables. string, and int. Each of these is described in
detail below.

String Literals

A string is a sequence of printing and non-printing characters. Strings in the MRRoboto
language are the same as those in Java, with the addition of escape codes for keys that do
not produce printing characters. Escape sequences are indicated by the key name (see
below chart), surrounded by backslashes. Strings are delimited with double quotes. To
include literal double quotes or backslashes, pair them, asin Java.

Example Strings: "abc", "How are you today?", "|TAB|", "\\"
Key Escape Codes

| F1] - | F12] F1 - F12 keys

| ALT]| [ALT]

| CTRL| [CTRL]

| CAPS_LOCK| [CAPS LOCK]

| DELETE] [DELETE]

| BACKSPACE| [BACKSPACE]

| TAB| [TAB]

| ENTER]| [RETURN]/[ENTER]

| DOVN| Down Arrow Key

| UP| Up Arrow Key

| LEFT] Left Arrow Key

| Rl GHT]| Right Arrow Key

| ESCAPE]| [ESC]

| HOVE| [HOME]

| END| [END]

| | NSERT]| [INSERT]

| PRI NTSCREEN| [PRINTSCREEN]

| SHI FT| [SHIFT]

| PGDOWN| [PAGE DOWN]

| PGUP| [PAGE UF|

| NUM_LOCK] [NUM LOCK]

| DOUBLE_QUOTE] [“]

String Grammar

string

Integers

An integer is either O or a positive whole number composed of a sequence of digits. The
minimum and maximum values are machine-specific. MRRoboto does not distinguish
between signed and unsigned integers and does not allow for negative values.
ExampleIntegers: 0, 1, 2, 13, 725

| nteger Grammar

i nt eger
© [0-9]+

Declar ation

Variables must be declared before use in order to determine their type. A declaration
statement consists of the type being declared, followed by the variable name identifier.
Variables are declared one per line. String and integer variables are automatically
initialized to “”, and O, respectively.

Declaration Grammar

decl aration
» var_type identifier

var_type
o ("int" | "string")

Assignment

Once a variable has been declared, it must be assigned a value before it can be used. An
assignment statement consists of the name of the variable, followed by an equals-sign
character, followed by the value the programmer wishes to assign to it (which must be of
the same type as the variable was initially declared to have). The value can be either an
atomic value (e.g., 1, "a"), or an expression that evaluates to a value of the correct type.

Operators

There are five types of operators in the MRRoboto language: string, mathematical,
equality, logical, and parenthetical. All operators in this language are infix.

There is only one string operator, the binary concatenation operator "++", which takes
two strings as operands and combines them into one.

There are four mathematical operators. addition ("+"), multiplication ("*"), division
("/"),and subtraction ("-"), each of which takes two integers as operands. If the result of
an integer operation would otherwise be a decima number, the decimal part is ignored
and a whole number is returned as if the result had been processed by the "floor"
operation (e.g., 5/2 = 2, which is the same as floor(2.5)).

There are seven equality operators, "=", "==", "<", ">" "<>" "<=" and ">=". All of them
take two operands, which can be of any type but must both be of the same type. The first
operator assigns the value of the right operand (which may be either a variable or literal
value) to the left operand (which must be a variable). The other equality operators return
either O for true or 1 for false, depending on whether the first operand is exactly equal to,
less than, greater than, not equal to, less than or equal to, or greater than or equa to the
second operand, respectively.

There are two logical operators, "&&" and "||", which take two operands of integer type.
The"&&" operator returns 1 if both its operands are non zero; otherwise it returns 0. The
"|[* operator returns 1 if either of its operands are non-zero; otherwise it returns O.

The parenthetical operators are "(" and ")", which must aways be matched. These

operators do nothing by themselves, but any statement inside them is "promoted” to the
highest level of precedence and evaluated as an atomic unit.

Precedence

Precedence for the operators follows roughly the same rules as in the C and Java
programming languages. The operators are listed below in order of increasing precedence
(operators on the same line have equal precedence):

| |
&&
< > <= >= == <>
+ - ++

*
()

Flow Control

MRRoboto allows the programmer to control the flow of program execution through two
types of constructs: conditional statements, which alow a block of code to be skipped,
and loop statements, which allow a block of code to be executed multiple times.

MRRoboto supports one type of conditional statement, namely the standard if-else type
conditional common to many programming languages.

|f-Else Statements

An if-else conditional statement consists of the keyword "if* followed by a boolean
expression (i.e., one that evaluates either to 0 or to non-zero), followed by a block of
code, followed by an optional "else" keyword followed by a block of code, followed by
an "end" keyword. If the boolean expression evaluates i non-zero, the block of code
following the "if" will be executed; otherwise, if thereis an "else" statement, the block of
code following it will be executed. In either case, program execution then continues
starting at the next statement following the "end". Conditional statements can be nested;
in such a case, the "end" aligns with the most recent "if".

Conditional Statement Grammar

condi ti ona
 "if " expr newine block ("else" newline block)? "end"

L oop Statements

MRRoboto supports two types of loop statements, the for loop which allows a block of
code to be executed a certain number of times, and the while loop, which alows a block
of code to be executed repeatedly until a certain condition is met.

L oop Statement Grammar

| oop
: while_loop | for_loop

For Loops

Similar to the "for" statement in common languages such as C++ and Java, the
MRRoboto "for" loop sets an initial variable and repeatedly executes a block of code,
atering the initial variable's value in a predetermined way at each execution until it
reaches some predefined termination condition. Specifically, the MRRoboto "for" loop
takes a variable (which must be of integer format), sets its value to the first value given,
and by default, at each iteration increments its value by 1 until it reaches the second value
given, which is the termination condition. If the optional "step” keyword is supplied, the
variable's value will be incremented by the supplied value rather than by 1.

For Loop Statement Grammar

for_l oop
"for " ‘identifier "," wvalue " to " wvalue ("step" value)?
new i ne bl ock "end"

While L oops

The MRRoboto "while" loop takes a boolean expression and repeatedly executes a block
of code until that expression evaluates to 0. (Obviously, the code should alter the value of
that expression in some way at each iteration, to prevent the loop from running
indefinitely.) Like the for loop, a while loop is closed by the keyword "end" to indicate
that the following code is no longer considered part of the loop.

While Loop Statement Grammar

whi |l e_I oop
: "while " expr new ine block "end"

User-Defined Procedures

In addition to the main block of code, the MRRoboto language allows programmers to
avoid needless repetition by encapsulating code that may be called multiple times during
the execution of a program into one or more user-defined functions, which when invoked
will run the code they contain.

Functions are defined separately from the main block of code, separated from it and by
each other by blank lines. They begin with the keyword "function" and end with the
keyword "end". Each function has a name, which must be a valid identifier; a function
may have the same name as a variable, but not the same name as another function. After
its name, a function must have a set of parentheses which may contain one or more
arguments. In the body of a function is a block of code ending with one "return”
statement.

Function Grammar

procedure
. procedure_declaration (stnt)* "end"! (NEW.LINE!)*

procedure_decl arati on
: "procedure"! (ID)? |ID" LEFT_PAREN (argunent_list)?
Rl GHT_PAREN

Arguments

A function is defined with one or more arguments, which are variables associated with
that function whose value is set when the function is invoked. Arguments passed to a
function must be of the same number and types as the function defines them. All
arguments are passed by value, meaning that any change made to a variable passed as an

argument to a function within that function does not affect the value of that variable in
the invoking block of code.

Return Values

Each user-defined procedure that returns a value must end with a line containing the
keyword "return” and a value, which can be either a numeric literal or an integer variable.
When a function executes, its value as a statement n the invoking block of code is
considered to be the same as its return value.

| nvocation

Procedures can be called either from the main block of code or from within another
function via a statement that consists of the function's name, an opening parenthesis, an
optional list of arguments of the correct number and types, and a closing parenthesis.

Procedure Call Grammar

function_call
. identifier "(" (value (", " value)*)?")"

Scope

MRRoboto incorporates a series of scope rules to determine the "visibility" of variables
and user-defined functions. All scoping in this language is static, meaning that the scope
of avariable or function can be completely determined at compile time.

Variable Scope

MRRoboto has no global variables. Each variable can be "seen” only by other statements
in the same block of code; a variable declared in the main block of code can be affected
only by other statements in that main block, while a variable declared in the body of a
function can be affected only by other statements in that function. The one exception to
this rule is function arguments, which allow the value of variables declared in one block
of code to be visible to another block of code.

Function Scope

All functions in this language have global scope, meaning they can be invoked from
anywhere: within the main block, within another function, or even within their own body
(i.e., recursive function calls are allowed).

Library Functions

The MRRoboto language has a variety of built-in library functions which the programmer
can aways invoke from any point in a program to perform certain specialized tasks.
These functions are the heart of the virtual user interface for controlling the keyboard and

mouse.

Library Functions

nouselMbve(int, int) move the nmouse to the screen coordinate
(x,y)

click() single click of the left mpouse button
at the current nouse position

noveAndCl i ck(int, int) nove the nouse to the screen coordinate

(x,y) and single slick the left nmpuse

butt on

ri ghtcick()

single click the right nouse button

moveAndRi ght Cl i ck(int, int) nmove the nmouse to the screen coordinate
(x,y) and single click the right nopuse
button

doubl eCl i ck() click the left npuse button twice at
its current position

noveAndDoubl eCl i ck(int, int) move the nouse to the screen coordinate
(x,y) and double click

wait(int) pause the program for the given nunber
of milliseconds

set Wai t (int) set the automatic wait between keyboard
and nouse events to the given val ue

type(string) create keyboard events for the given
string

press(string) press and rel ease the given key

hol d(string) press and hold the given key

rel ease(string) rel ease the given key

exec(string) execute the given string command

print(string) print the given string to the consol e

printlint(int) print the given integer to the console

substring(string, int, int) returns the substring of the given
string between the the two given
i nt eger val ues

| ength(string) return the integer length of the given
string

pc(int, int) return a string cont ai ni ng t he
hexadeci mal pixel value at the given
coordi nate (Xx,Yy)

nmouseHol d(i nt) hold the left nouse button down for

gi ven anount of tine

Project Plan

Our regular group meetings provided a basis to understanding the goals of our project and
accomplishing each task both as an individual and as a group. At each meeting, we would
lay out the scope of the language and determine how to best to implement each part.
During development and testing, our meetings were even more helpful as this was the
only way that everyone could communicate regarding their individua tasks. Each person
was responsible for performing unit testing on their respective pieces before it was sent to
the other members. This helped cut down the number of errors that could have come up
otherwise,

Team Responsibilities

Since the start of the project, we have held regular group meetings after class for about an
hour to discuss the items that have been completed and what areas need more focus in
order to reach our goals. In addition to the meetings, we also set tasks for each member of
the group. Listed below is what each team member contributed to the MRRoboto project.

Jason Kopylec Front-end, CodeGenerator, Library, testing, documentation
Adam Marczyk | Treewalker, SymbolTable, SemanticAnalyzer, testing, documentation
Hema Krishnan | Lexer, parser, testing, documentation

Programming Style Guide

Our object was to create a language that could be understood by anyone easily. In
following through with this objective, we set some basic guidelines regarding the style in
which to write the language. The coding conventions that we adhered to aided us in
making modifications to the existing functionality without waiting for the original
author(s) to to explain everything. This, in turn, alowed for faster development. In
addition to this, all code was to be commented as clearly as possible.

ANTLR Coding Style

All rule expansions will start on the line after the rule name in the lexer and parser. The
above shall be followed unless, the rule is defining an operator. Since these are usually
short, it did not seem logical to write both the name and definition on separate lines.

The colon “:” will always start on the next line one tab key away. The “;” will finish the
rule by being placed under the colon on the next line, unless an operator is being defined.
In this case, the “;” is placed at the end of the line.

Token names, defined in the parser, are written in upper-case, while the syntactic terms
are written in lower-case. All other code and comments follow the Java coding style.

JAVA Coding Style
All necessary indentation, under function definitions or otherwise, will be one tab key

away.

The left brace will occupy the same line as the name of the method, and will be placed
after one space.

The corresponding right krace will occupy one full line at the end, being placed in the
same column as the start of the method declaration.

The else-part of an if-statement will follow in the same line as the right brace for that if-
statement.

Naming conventions will be almost the same that Java follows. Class names shall be
devised such that every word starts with an upper-case letter and all names start with
MRR. Variable names will start with a lower-case letter, with every word that follows
starting with a capital letter. Method names follow the same style as well.

Comments follow the Javadoc standards.

Project Timeline

September 28th Language white paper

Last week of October Language grammar

October 21st Language reference manual

Last week of October Front-end

Last week of November Treewalker, Symbol Table, Semantic Analyzer
First week of December Library

Second week of December Testing and Error Checking

December 20th Entire project and final report

Softwar e Development Environment

The primary programming language is Java and therefore most of the maor files are
written in it. The lexer and the parser are written using Antlr grammar syntax. These
grammar files, in turn, are trandated into Java code.

Operating Systems:

As Java is a platform-indeperdent language, it can be used as a development tool
anywhere. Even though this is true, we needed a GUI based system to showcase the full
capabilities of our language. For this reason, we chose to use Windows to develop and

test our tool. Also, all of us had access to this system, which made it easier to collaborate
on this project. Each of developed on our respective machines and shared the source files
for further implementation and testing.

Java 1.4:

Java is a simple, easy-to-use object-oriented language that is portable and secure. Our
primary interest in the language lay in the Robot class, which has been in existence since
Java 1.3. This along with the rest of he classes available helped set up the symbol table,
sematic analyzer and code generator.

Antlr:

The language lexer and parser are both written in Antlr. Antlr is a language tool that
provides a framework for constructing recognizers, compilers, and trandators from
grammatical descriptions containing Java or C++ actions. ANTLR provides excellent
support for tree construction, tree walking, and transation. Our purpose was to trandate
our language into Java, for which Antlr was the perfect tool to use.

Project Log

September 28th Language white paper

Last week of October First version of language grammar

October 21st Language reference manual

October 25th Front-end

Last week of November Final version of grammar

November 20th Symbol Table

Third week of November First version of Treewalker

Second week of December | Final version of Treewalker & Semantic
Analyzer

First week of December Library

Second week of December | Testing and Error Checking

December 20th Entire project and final report

Architectural Design

User Prograr
A
ANTLR Lexer \
i ANTLR Error Reporting
ANTLR Parser "
A
ANTLR Tree Parser - Symbol Table

Build Symbol Table

A

ANTLR Tree Parsex Custom Error Reporting
Code Generator

A

Java Compiler (javac)

Java Error Reporting

User Program - The MRRoboto code generated by the user to be converted and run as a
java program

ANTLR Lexer/ANTLR Parser — Check syntax and build the AST. There is build i
ANTLR Error Reporting that is relied on by the MRRoboto compiler to detect and alert
the user to syntax errors.

Build Symbol Table — This is the first of atwo pass compiler. It scans through the user
file looking only for variable declarations and procedure declarations. These declarations
are used to build the symbol table that is referred to in the second pass of the compiler to
do reference and type checking.

ANTLR Tree Parser/Code Generator — This is the second waking of the AST
checking static semantics, generating the destination java code or reporting any errors.

MRRoboto.java — This overal picture is managed by this module, it is the main
procedure run which initializes the ANTLR pieces, holds the symbol tables and guides
the code generator and error reporters. It is through this module that all the other
components communicate with one another.

Test Plan

The testing procedures grew aongside the development of the language itself. At the
beginning as the project began to be coded, different group members were working on
separate parts of the language, so each had different issues to look at when it came to
testing.

The first stage of development began on two fronts. Hema and Adam worked on
generating the ANTLR lexer and parser while Jason implemented the library functions
and the preliminaries for the tree walker and code generator. The parser and generator
were tested on an extremely fine grained and incremental basis. Any modifications that
were made to parts aready deemed as previously working, would be rerun with tested to
ensure that there was no loss of functionality.

The opposite work, building the code generator, focused initially on only two pieces of
functionality in the language, comments and native java code. The syntax and semantics
for these language primitives are straight forward, and the focus instead was to get a
complete and running compiler which performed parsing and generating ASTs, walking
those ASTs and generating code and/or error messages. Next variable and procedure
declarations were added in order to facilitate the implementation of the first pass of the
compiler which built the symbol table and handled scope for the second pass.

Once these were implemented, there were two goals of testing, designing programs that
should run, and crafting programs that should fail. By separating these two goals, we
were able to ensure that there was no loss of functionality as more features were added
and also to assert that our language was allowing only programs that we deemed to legal
programs of the language.

Here we show three examples of such programs. The first two were to ensure that
properly formed programs were seen as such, and they test the library functions and flow
control, respectively. The final test program is built out of purposefully malformed
programs. They are syntactically correct, but semantically invalid because of type
checking or scope errors, in order to test the quality of the error checking procedures.
Following each of the properly formed programs is the code generated by the MRRoboto
compiler.

testlibraryfunctions.mrr

** MRRoboto Test Suite
** Coded by Jason Kopyl ec
** Each library function is tested for correctness using this file

nmouseMove(50, 100)

click()

noveAndCl i ck(50, 500)
rightdick()

noveAndRi ght Cl i ck(50, 500)

doubl eCl i ck()
nmoveAndDoubl eCl i ck(50, 500)
exec("not epad. exe")

wai t (2000)

set Wi t (1000)

type("Hello")

hol d("| ENTER| ")

rel ease("| ENTER| ")

print("Print works!")
printlnt(5)
print(substring("Jason", 1, 2))
printlnt(length("Jason"))
print(pc(50, 50))

print("Al'l the library functions Wrk!!")

testlibraryfunctions.java

/| Gener at ed by MRRobot o
public class testlibraryfunctions {
public static MRRobotoLi brary nrRobotoLibrary;

public static void main(String[] args) {
nr Robot oLi brary = new MRRobot oLi brary();
usermai n();

public static void usermain() {

/1 MRRoboto Test Suite

/1 Coded by Jason Kopyl ec

/1 Each nmodule is tested correctness using this file

/1l Test direct java code

/1 BEA N USER CODE

Systemout.println("Direct Java Code Works");

/1 END USER CODE

/1l Test Library Functions

nT Robot oLi brary. nouseMove(50, 100);

nT Robot oLi brary. click();

nT Robot oLi brary. noveAndC i ck(50, 500);

nT Robot oLi brary. rightClick();

nr Robot oLi brary. noveAndRi ght Cl i ck(50, 500);

nt Robot oLi brary. doubl eCl i ck();

nr Robot oLi brary. noveAndDoubl eCl i ck(50, 500);

nTr Robot oLi brary. exec(" not epad. exe");

nT Robot oLi brary. wai t (2000) ;

nT Robot oLi brary. set Wai t (1000) ;

nT Robot oLi brary. type("Hel | 0");

nT Robot oLi brary. hol d("| ENTER| ") ;

nr Robot oLi brary. rel ease("| ENTER| ") ;

nr Robot oLi brary. print("Print works!");

nt Robot oLi brary. printlnt(5);

nr Robot oLi brary. print (nr Robot oLi brary. substring("Jason", 1,
2));

nT Robot oLi brary. printlnt (nrRobotoLi brary. | ength("Jason"));

nT Robot oLi brary. pri nt (nmr Robot oLi brary. pc(50, 50));

nT Robot oLi brary. print("Al

the library functions Work!!");

testprimitives.mrr

** MRRoboto Test Program
** Tests Primtives
** Coded by Jason Kopyl ec

**Test if statenent
if (2<3)
print("If | ooks good!")
el se
print("If is wong if this prints")
end
**Test for statenent
i nt
for i, 1to 5
printlint(i)
end

**Test for with step

print("")

for i, 2 to 8 step 2
printint(i)

end

print("Wo do we appreciate? For

** Test while statenent

| oops work!")

int x

x =1

whil e (x<>3)
print("Wile is working * 2!")
X=x+1

end

**Test procedure cal

t est Procedure()

** Test function cal

string f
f = testFunction()
print(f)

procedure testProcedure()
print("Procedure works!")
end

procedure string testFunction()
return "Function works!"
end

testprimitives.java

/I Generat ed by MRRobot o
public class testprimtives {
public static MRRobotoLi brary nrRobotoLi brary;
public static void main(String[] args) {
nT Robot oLi brary = new MRRobot oLi brary();
usermai n();

public static void usermain() {

/|l Test if statenent

if((2 <3)) {
nr Robot oLi brary. print("If | ooks good!");
} else {
nr Robot oLi brary. print("If is wong if this prints");
}
/1 Test for statenent
int i = 0;

for(i =1; i <=5; i +=1) {
nr Robot oLi brary. printint(i);
}

/]l Test for with step
nr Robot oLi brary. print("");
for(i =2; i <=8; i +=2) {
nr Robot oLi brary. printint(i);

nr Robot oLi brary. print("Who do we appreciate? For | oops

wor k! ") ;
/'l Test while statenent
int x = 0;
X = 1;

while((x !'=3)) {
nr Robot oLi brary. print("Wiile is working * 2!");
X = (x + 1);

}

/1l Test procedure cal

t est Procedure();

/1 Test function cal

String f ="";

f = testFunction();

nT Robot oLi brary. print(f);

public static void testProcedure() {
nr Robot oLi brary. print("Procedure works!");

public static String testFunction() {
return "Function works!";
1

badtest.mrr

** MRRoboto Test Suite

** Coded by Jason Kopyl ec

** Syntax errors are picked up by ANTLR
** This file tests semantic errors

** Test Library Functions

mouseMbve(" This procedure takes integers")
click("This procedure takes no argunents")
exec(9999)

**Assign an int to a string
string X
x=5

**Assign a string to an int
int vy
y="This should error"

**Try doing math on strings
string m
m = "Jason" - "bad progrant

L essons L ear ned

Jason Kopylec

Communication and teamwork are key. There are times during the semester when each
group member reeded to focus on other work and keeping close tabs on the work being
done makes balancing the workload much easier. | definitely learned that even making a
programming language that looks much like other languages that we are used to is quite
challenging and full of subtle difficulties and theoretical and time limitations. As the
team leader, | also learned to put the extra time in needed to see that due dates were met
and that team members were keeping on task. We had a motto in our group that was, “it
doesn’'t matter who does it, it's just gotta get done.”

My advice to future groups is to familiarize yourselves with the ANTLR tool as early as
possible. The class discussions and documentation is thorough, but until you dig in and
get your hands dirty, ANTLR will remain foreign. Another important issue to keep in
mind with ANTLR is to keep in mind the entire project. It does not make much sense to
spend a lot of time on the lexer and parser, just to have to go back and modify large
portions of it in order to incorporate the tree walker. Learn to like and work well with
your teammates, you will need them and they will need you. Look at old projects when
you get stuck or unsure how to implement something.

Adam Marczyk

Keep your language design simple and clean! We figured out very early on (within a
week or two of putting our group together) exactly what we wanted our language to do
and what capabilities we wanted it to have, which turned out to be a valuable asset later
on. Don't clutter your design with unnecessarily complicated syntax rules and don't fall
victim to feature creep. Languages narrowly tailored to perform specific tasks are better
than general-purpose ones.

We found that version control software is not necessary as long as you maintain a clear
understanding of who is responsible for what tasks. We kept backup directories
corresponding to each day of work and noted in the source code what had been added
since the last backup was made and what remained to be done, which worked well at
keeping everything under control.

Writing code in ANTLR is not the kind of task that can be easily paralelized, so group
meetings were of limited advantage (what they were best for was coordinating who
would do what and working together to figure out how to get started - see the below point
on learning curves). Still, you'll probably want to have at least one per week to maintain
communication among your group members.

ANTLR is not that difficult to use, and once you know what you're doing with it, you'l
be able to put your language together relatively quickly. However, it has somewhat of a
learning curve right at the start. Be sure to leave yourself plenty of time to figure out how
to useit. (See the last tip.)

We started coding the tree-walker about three and a half weeks in advance. That was
enough time, but only just. If you want a comfortable safety margin, | recommend
starting closer to four to five weeks in advance (more if your language is more complex).
Another month for the parser and two to three weeks for the lexer should be about right.
(In fact, the actual coding will take less time than this, but these time estimates factor in
the work for the other courses you'll probably be taking.)

The ANTLR homepage at www.antlr.org has example grammar files that correspond to
languages such as C++, Java, and so on. These are helpful.

Hema Krishnan

In starting this project, the first and foremost thing that | learned was that communication
was the key. It greatly helped having the group meetings and finding out how everyone
else was faring. The other thing was value was organization. It helped that we knew who
was doing what and therefore learned early on who had expertise in what area. These two
things aided our venture in devising our own language. It also did not hurt that all of usin
the group knew about the subject matter and were enthusiatic about the project.

It is aso important to know that if one gets stuck while coding a critical piece of the
puzzle, they should not be hesitant in asking for help, be it from the other group
members, the professor or the TA. | found this out the hard way when writing the lexer
and parser. You never know who has ideas they can impart to you and solve the problems
you are having.

Bibliography

Baldwin, Richard. “Introduction to the Java Robot Class in Java’ Developer.com 27
May 2003 <http://www.devel oper.com/javalother/print.php/2212401>

Bellis, Mary. “The History of the Computer Keyboard.” About.com 2004
<http://inventors.about.com/library/inventors/blcomputer _keyboard.htm>

Clark, Mike. “JUnit FAQ.” JUnit.org 23 Sept. 2004
<http://junit.sourceforge.net/doc/fag/fag.htm>

Hammell, Thomas. “Extreme Java GUI Testing.” Developer.com 26 Apr. 2002
<http://www.devel oper.com/java/other/print.php/1016841>

Milo. “History of Operating Systems.” OSData.com 26 Sept. 2000
< http://www.osdata.com/kind/history.htm>

MSDN.com 2004 <http://www.msdn.com>

Parr, Terrence. “ANTLR Reference Manua” ANTLR 9 May 2004
<http://www.antlr.org/doc/index.html>

“Robot (Java 2 Platform SE v1.4.2)” Sun.com
<http://java.sun.com/j2se/1.4.2/docs/api/javalawt/Robot.html>

“Shooting Range” Animated Game. Flash Games
<http://www.t450l.com/play_flash_us.php? D=791>

Tuck, Mike. “The Real History of the GUI” StePoint.com 13 Aug. 2001
<http://www.sitepoint.com/print/real- history-gui>

“Windows Macro.” Website Search. Download.com 26 Sept. 2004
<http://www.downl oad.com/3120-20-0.html ?gt=windows+macro& tg=dl-2001>

Appendix A: Test Code

goodtest.mrr

** MRRoboto Test Suite
** Coded by Jason Kopyl ec

** Each nodule is tested correctness using this file

** Test direct java code
<% Systemout.println("D rect Java Code Works");

** Test Library Functions
nmouseMve(50, 100)

click()

nmoveAndd i ck(50, 500)
rightdick()

moveAndRi ght A i ck(50, 500)
doubl ed i ck()

nmoveAndDoubl ed i ck(50, 500)
exec("not epad. exe")

vai t (2000)

set Wi t (1000)

type("Hell o")

hol d("| ENTER| ")

rel ease("| ENTER ")
print("Print works!")
printlnt(5)
print(substring("Jason", 1, 2))
printlnt(length("Jason"))
print(pc(50, 50))

print("All the library functions Wrk!!")

**Test if statement
if (2<3)
print("If |ooks good!")
el se
print("If is wong if this prints")
end

**Test for statenent

int i

for i, 1to5
printint(i)

end

**Test for with step

print("")

for i, 2to 8 step 2
printint(i)

end

print("Wwo do we appreciate? For |oops work!")

** Test while statenent

int x

x =1

whil e (x<>3)
print("Wiile is working * 2!")
X=x+1

end

**Test procedure call
test Procedure()

** Test function call
string f

f = testFunction()
print(f)

%

procedure testProcedure()
print("Procedure works!")
end

procedure string testFunction()
return "Function works!"
end

BadTest.mrr

** MRRoboto Test Suite

** Coded by Jason Kopyl ec

** Syntax errors are picked up by ANTLR
** This file tests semantic errors

** Test direct java code
<% Systemout.println("Direct Java Code Wrks"); %

** Test Library Functions

mouseMove(" This procedure takes integers")
click("This procedure takes no argunents")
exec(9999)

**Assign an int to a string
string x
x=5

**Assign a string to an int
inty
y="This should error”

**Try doing math on strings
string m
m = "Jason" - "bad progrant

Appendix B: ANTLR Code

mrroboto.g

/***

Progranm ng Languages, Fall 2004

Aut hor s: Jason Kopyl ec - jkk2106
Hema Krishnan - hk2230
Adam Marczyk - al n2126

*
*
*
*
* MRRobot o ANTLR Language Lexer, Parser and TreeVal ker

*
***/

IR NN NNy
cl ass MRRobot oLexer extends Lexer;

options {
k = 2;
testLiterals = fal se;
charVocabulary = '"\3".."'\377";
export Vocab = MRRobot o;

}
SPACE

N

| "\t

) { $set Type(Token. SKIP); }
NEW LI NE

S'\nt { newine(); }

| "\r?
"\n" "\r’

{ newline(); }
protected
LETTER

cat.ltz

| "A..0Z
protected
DAT

M N
I D

options { testLiteral s=true; }
LETTER (LETTER | DAT | ' _")*

i

/* Denotes a bl ock of Java code to copy to the output file unparsed. */
JAVA
"<%! (options { greedy=false; } : (.))* "%"! NEWLINE

’

/* Comments begin at a ** token and extend to the end of the line. */
COMVENT
"**"1 (options { greedy=true; } : ~('\n" | "\r'))*

1

/* Note that the first quotation mark is kept. This is deliberate. Ensuring
that all string literals start with the " character allows us to
distinguish literal strings fromother data types in the AST. */

STRI NG_LI TERAL

o "\"" (options { greedy=false; } : (.))* "\""I

i

I NT_LI TERAL
(DAT)+

i

/* Operators in MRRoboto obey the follow ng precedence rules,
fromlowest to highest:

&&
< > <= >= == <>
+ - ++
*
()
*/
EQUALS =
LEFT_PAREN (s
Rl GHT_PAREN)
COMVA B
PPLUS ++"; //string concatenation
PLUSCP B
MULTCP G B A
GTE ">z
LTE <=
GT '
LT <
EQ t=="
NEQ <"
R ST

IR NN NNy,
cl ass MRRobot oPar ser ext ends Parser;

options {
bui | dAST = true;
k = 2;

}

tokens {
PROGRAM
MAI N BLOCK;
PROCEDURE;
PROCEDURE_CALL;
VAR DECL;
ARGUMENT LI ST;
}

/* A programin MRRoboto consists of a main block (one or nore statenents)
followed by zero or nore procedure definitions. */
program
mai n_bl ock (procedure)* ECF!
{ #program = #([PROGRAM "PROGRAM'], progran); }

mai n_bl ock
Do(stmt)+
{ #main_bl ock = #([MAI N_BLOCK, "MAI N BLOCK"'], main_block); }

)

/* A procedure definition consists of the procedure declaration
(defines the name of the procedure and its arguments, followed
by zero or nore statements, termnated by the "end" keyword. */

procedure

procedure_decl aration (stnt)* "end"! (NEW.LINE)*
{ #procedure = #([PROCEDURE, "PROCEDURE"'], procedure); }

’

/* A statement can be any of the follow ng: a block of unparsed Java code,

a comment, a variable declaration, an assignnent, a procedure call,
an if statement, a for loop, a while loop, a directive (break,
continue or return), or whitespace. */
st
: JAVA { #stmt = #([JAVA], stnt); }
| COMMENT { #stnt = #([COMMVENT], stnt); }
| var_decl aration
| assignment
| procedure_call
| conditional
| for_Ioop
| while_loop
| directive
| NEW.LI NE!

/* A procedure declaration, found at the begi nning of every procedure
definition (prototyping is neither necessary nor allowed), consists
of the keyword "procedure", an optional return type (assuned to be void
if not provided), a unique nanme, and an optional |ist of argunents. */
procedur e_decl aration
"procedure"! (ID)? ID" LEFT_PAREN (argunent _list)? R GHT_PAREN

1

/* Argunent definitions consist of a conma-separated |ist of variable definitions.

argunent _| i st
var _decl aration (COWAl var_decl aration)*

’

directive
" break" "
| "continue"”
| "return"” bool expr

’

condi ti onal
o "if"A LEFT_PAREN bool expr Rl GHT_PAREN NEW LI NE!
(stnt)*
("else" (stnt)*)?
"end"! NEW.LI NE!

)

/* The 'for' construct, simlar to for loops in C and Java, is used
to iterate over a block of code a given nunber of tines.
An exanpl e:
int x
for x, 1 to 10 step 2

end
(Notice that the variable used as the index nust be of
integer type and nust be decl ared beforehand.)
The for loop sets the index variable to the starting val ue
and increments it by the step amount before each iteration
until it is equal to or greater than the ending val ue, at
whi ch point the loop termnates without iterating again.
The step anount is optional and assuned to be 1 if not provided.
Note that termnation is not guaranteed if the body of the
for | oop nodifies the index variable unpredictably or if
the ending value is less than the starting value. */

for_I oop
"for"”N | D COWA! bool expr "to"! bool expr
("step" bool expr)?
(stmt)* "end"! NEW.LINE

i

whi | e_| oop
: "while"” LEFT_PAREN bool expr Rl GHT_PAREN!
(stnmt)* "end"! NEW.LINE

’

procedure_cal |

*/

I D LEFT_PAREN (arguments)? R GHT_PAREN
{ #procedure_call = #([PROCEDURE_CALL, "PROCEDURE CALL"], procedure_call); }

i

argunent s
bool expr (COWA! bool expr)*
{ #argunents = #([ARGUMENTS, "ARGUMENTS'], argunents); }

)

var _decl aration
: IDID
{ #var _declaration = #([VAR DECL, "VAR DECL"], var_declaration); }

i

assi gnment
| D EQUALS" bool expr

i

bool expr
bool expr1 (OR* bool expr1)*
bool expr1
. bool (AND* bool)*
bool
:oexpr ((GIer | LTEN | GI™ | LT | EQ | NEQ') expr)*
expr
: exprl ((PLUSOPM | PPLUSM) exprl)*
exprl
: value (MULTOPM val ue)*
val ue
I D
STRI NG _LI TERAL
I NT_LI TERAL

I

|

| procedure_call

| LEFT_PAREN bool expr Rl GHT_PAREN!

N N NN NN NNy

/* The tree-wal ker makes two passes. On the first pass, it captures
all procedure names (along with their types and the types of their
argunments) and stores them as globally scoped synbols; on the
second pass, it does everything else. */

cl ass MRRobot oWl ker extends TreeParser;

{
MRRobot oCodeCGener at or cg = new MRRobot oCodeGener at or () ;
MRRSemant i cAnal yzer semantics = new MRRSemanti cAnal yzer();
String error = "";
String typeError = "";

}

/* This is used to create a Java class file with the sane nane
as the .mr file it was created from */
createfile : #(fn:ID { cg.createdass(fn.getText()); });

FIEETEETEEETTEl] begin first pass rules [/ 1TITTTTTTTTTT]

/* On the first pass, take only procedures - ignore the nain block. */
firstpass : #(PROGRAM i gnore_mai n_bl ock! (store_procedure_nanes)*);

i gnore_nai n_bl ock : #(MAIN_BLOXK {});
st ore_procedure_nanes : #(PROCEDURE procedure_nane {});

/* For each procedure definition, store the nane, the return type,
and the type of its arguments. Procedure types are optional in
this | anguage, and assunmed to be void if none is provided. */

procedure_name : #(procnane: | D (proctype:|D)? (procedure_argunent)*

String type = (proctype == null ? "void" : proctype.getText());
if(!type.equal s("void") & !senantics.isValidType(type))

error += "Bad return type: "+type+'\n";
semanti cs. st opSt ori ngAr gurent s(procnane. get Text (), type);

)
procedure_argunent : #(VAR DECL type:ID ID { semantics. addArgunent (type.getText()); });
TEEEEEEEErrrrrrill end first pass rules [/ 1TTTTTETTIDTT]

/* As we walk the tree, we translate MRRoboto code into Java code,
all of which is buffered in the code generator. W al so buffer
any semantic errors we may encounter. Wen we're done, if the code
translated cleanly, tell the code generator to wite it out to a file;
otherwise, print a listing of errors to the display and quit. */
program : #(PROGRAM (mai n_bl ock (procedure)* { cg.endCode(error); }));

mai n_bl ock : { semantics.enterScope(); }
#(MAI N_BLOXK (stnt)*
{ semantics.|eaveScope(); }

)i

procedure: #(pdec: PROCEDURE
{ semantics. enterScope(); }
procedure_decl aration
(stnt)*

i f(semantics. get NeedsReturn() && !semantics. hasReturnStnt())
error += "Procedure "+semantics.inFunction()+" requires a return statenent\n";
semanti cs. | eaveScope();
senanti cs. exi t Function();
}
)

stm
/* Non-comment statenents followi ng a break, continue or return
statenent at the sane | evel of scope are unreachable. */

i f(semantics. unreachabl e())
error += "Unreachabl e statement\n";

cg.witelndent();

/* This is for functions that need a return statement.
We coul d be clever about checking for this; we won't be.
Instead, we sinply assert our godlike powers as |anguage
designers to force the |ast statenent of any typed function
to be the return statenment. */

semanti cs. cl earReturn();

java
var _declaration { cg.endline(); }
assignment { cg.endline(); }
condi ti onal
procedure_call { cg.endline(); }
for_I oop
whi | e_| oop
directive { cg.endline(); })

comment

e —_—————— e e~

/* Directives, unlike all other statenents, can't go just anywhere. Make
sure their placement in the code is valid, and note that any statenents

imredi ately following themat the same scope |evel are unreachable. */
directive :
#(" br eak”

i f(!semantics.inLoop())

error += "'break' statement outside |oop\n";
semant i cs. set Unreachabl e() ;
cg. generateDirective("break");

| #("continue"

i f(!semantics.inLoop())

error += "'continue' statenment outside |oop\n";
semant i cs. set Unreachabl e() ;
cg.generateDirective("continue");

)

| #("return"

semant i cs. set Unreachabl e() ;
semantics. set Return();
cg.generateDirective("return ");

ret:tree_expr

i f(semantics.inFunction() == null)
error += "'return' statenent outside function\n";
else if(!semantics.verifyType(ret,
semanti cs. | ookupType(senantics.inFunction(), true)))
error += "Bad return type: expected
"+semanti cs. | ookupType(semanti cs. i nFunction(), true)+", got
"+semantics.inferType(ret)+"\n";
1)

)

/* When beginning a loop, tell the semantic checker that we've entered
a new | evel of scope, and also let it knowthat we're inside a | oop
(i.e., break and continue directives will be valid here). */

for_loop :

{
semanti cs. ent er Scope() ;
semanti cs. begi nLoop();

}
#("for" index:|1D

i f(!semantics.isDefined(index.getText()))

error += "Undefined variabl e "+i ndex. get Text()+"\n";
i f(!semantics.verifyType(index, "int"))

error += "Index variable "+index.getText()+" in 'for' loop nmust be int\n";
cg. gener at eFor Loop(i ndex. get Text ());

start:tree_expr

{
cg. conti nueFor Loop(i ndex. get Text ());
if(!semantics.verifyType(start, "int"))
error += "Start condition in 'for' |oop nust be int\n";
}
end: tree_expr
{
cg. conpl et eFor Loop(i ndex. get Text ());

if(!semantics.verifyType(end, "int"))
error += "End condition in 'for' |oop nust be int\n";

}
("step" { cg.generateStep(); } step:tree_expr

if(!semantics.verifyType(start, "int"))
error += "Step expression in 'for' |oop nust be int\n";
P2
{ cg.closeForLoop(); }
(stnt)*

{

cg. cl oseBl ock();

senanti cs. exi t Loop();
semanti cs. | eaveScope();
}
)

whi l e_l oop :

semanti cs. ent er Scope() ;
semanti cs. begi nLoop() ;

}
#("while" { cg.generateWwileLoop(); }
cond: tree_expr

if(!semantics.verifyType(cond, "bool ean") &&
I semantics. veri fyType(cond, "conparator"))
error += "Condition in '"while' |oop nust be bool ean\n";
cg. cl oseWi | eLoop();

stnt)*
cg. cl oseBl ock(); semantics.|eaveScope(); semantics.exitLoop(); }

/* Conditional statenents, by contrast, do constitute a new scope |evel,
but aren't |oops. Note that an "if" block and the associated "el se"
bl ock are different scopes - this is the sanme way it is in Java. */

conditional : { senantics.enterScope(); }

#("if" { cg.generateConditional (); }
cond: tree_expr

if(!semantics.verifyType(cond, "bool ean") &&
I semantics. verifyType(cond, "conparator"))
error += "Condition in "if' statement nust be bool ean\n";
cg. cl oseCondi tional ();

}
(stnt
| { semantics.|eaveScope(); semantics.enterScope(); } "else" { cg.generateEl se();

)*

{ cg.closeBlock(); senmantics.|eaveScope(); });

procedure_decl aration : #(procnane:|D

{

}
(proctype: I D { semantics. set NeedsReturn(); })?
{

semanti cs. ent er Functi on(procnane. get Text ());

cg. gener at eProcedur eDecl ar ati on(procnane. get Text (),
semanti cs. | ookupType(procnane. get Text (), true));
cg.start Argunent Li st ();

(var_declaration ({ cg.witeComma(); } var_declaration)*)?

{
cg. endAr gunment Li st () ;

cg. cl oseProcedurebDecl aration();

}
)
var_decl aration : #(vint: VAR DECL type:|D nane:| D
{
if(!semantics.isValidType(type.getText()))
error += "Unknown type: "+type.getText()+"\n";
cg. gener at eVar Decl arati on(type. get Text (), name. getText());

i f(semanti cs. addSynbol (nane. get Text (), type.getText()) == -1)
error += "Redefinition error: "+name.get Text()+"\n";
}

)
coment : #(c: COMENT { cg.generateComment(c.getText()); });

java : #(j:JAVA { cg.generateUserJava(j.getText()); });

assi gnment : #(assgn: EQUALS
{ cg.generateAssi gnment (assgn. getFirstChild().getText()); }
id:1D rvalue:tree_expr

if(!semantics.isDefined(id. getText()))
error += "Undefined variable "+id.getText()+"\n";
el se if(semantics. synbol | sFunc(id. getText()))
error += "Lval ue in assignnent nust be a defined variabl e\ n"
else if((typeError = semantics. checkTypes(assgn, id, rvalue)) !'=null)
error += typeError+"\ n";

}
).

/* Since precedence | evels are handled in the parser, we don't need
to handle themhere. Al arithmetic and bool ean operators can be handl ed
as aspects of a single rule; semantic analysis will tell us if
any types don't match. W do need to handl e conparators somewhat
differently for strings and ints, though. */

tree_expr
#(aop: AND
{ cg.lparen(); }
t:tree_expr
{ cg.generateQ(aop.getText()); }
t0: tree_expr
if((typeError = senantics. checkTypes(aop, t, t0)) != null)
error += typeError+"\ n";
}
{ cg.rparen(); }
) |
#(oop: OR
{ cg.lparen(); }
tA tree_expr
{ cg. generateQ(oop.getText()); }
tB:tree_expr
if((typeError = semantics.checkTypes(oop, tA tB)) != null)
error += typeError+"\n";
}
{ cg.rparen(); }
) |
#(gl: GT

{ cg.lparen(); }
t1l:tree_expr

i f(semantics.inferType(tl).equal s("string")) cg.stringConp();
el se cg. generateOp(gl. get Text());
}

t2:tree_expr
{
if(semantics.inf erType(t 2) equal s("string"))
cg. stringConmp2("=
if((typeError = serrantl cs checkTypes(gl tl, t2)) !'=null)
error += typeError+"\n"

}
{ cg.rparen(); }

I
#(1: LT
{ cg.lparen(); }
t3:tree_expr

{
i f(semantics.inferType(t3).equals("string")) cg.stringConp();
el se cg. generateM(|.get Text());

}

t4:tree_expr

{

i f(semantics.inf erType(t4) equal s("string"))
cg. stringComp2("== -1");

if((typeError = semantics.checkTypes(l, t3, t4)) != null)
error += typeError+"\ n";

{ cg.rparen(); }

#(g2: GTE
{ cg.lparen(); }
t5:tree_expr
{
i f(semantics.inferType(t5).equals("string")) cg.stringConp();
el se cg. generate(g2.get Text());

t6:tree_expr

if(semantics.inferType(t6).equal s("string"))
cg. stringConp2("> -1");

if((typeError = semantics. checkTypes(g2, t5, t6)) != null)
error += typeError+"\ n";

}
{ cg.rparen(); }
) |
#(12: LTE
{ cg.lparen(); }
t7:tree_expr
{
i f(semantics.inferType(t7).equals("string")) cg.stringConp();
el se cg.generateM(l 2. get Text());

t8: tree_expr

if(semantics.inferType(t8).equals("string"))
cg. stringConmp2("< 1");

if((typeError = semantics. checkTypes(12, t7, t8)) !=null)
error += typeError+"\ n";

}
{ cg.rparen(); }

#(e: EQ
{ cg.lparen(); }
t9:tree_expr
{
i f(semantics.inferType(t9).equals("string")) cg.stringConp();
el se cg. generate((e. get Text());

t10: tree_expr

i f(semantics.inferType(t10).equal s("string"))
cg. stringConp2("== 0");

if((typeError = senmantics. checkTypes(e, t9, t10)) != null)
error += typeError+"\ n";

% cg.rparen(); }
)

#(n: NEQ
{ cg.lparen(); }
t1l:tree_expr
{
if(semantics.inferType(tll).equal s("string")) cg.stringConp();
el se cg.generateQp("!=");

t12:tree_expr
{
i f(semantics.inferType(tl1l2).equals("string"))
cg. stringConp2("!'= 0");
if((typeError = semantics.checkTypes(n, t11, t12)) != null)
error += typeError+"\n";

}
{ cg.rparen(); }
) |
#(pop: PLUSCP
{ cg.lparen(); }
t13: tree_expr

{ cg.generateQ(pop.getText()); }
t14: tree_expr

{ cg.rparen(); }
{

if((typeError = semantics. checkTypes(pop, t13, t14)) != null)
error += typeError+"\ n";

) |
#(nop: MULTOP
{ cg.lparen(); }
t 15: tree_expr
{ cg.generateQ(nop.getText()); }
t16: tree_expr
{ cg.rparen(); }

if((typeError = semantics.checkTypes(nop, t15, t16)) != null)
error += typeError+"\ n";
}

)|

#(sop: PPLUS
{ cg.lparen(); }
t17:tree_expr
{ cg.generate("+"); }
t18: tree_expr
{ cg.rparen(); }
{

if((typeError = semantics.checkTypes(sop, t17, t18)) != null)
error += typeError+"\n";

) |

#(num I NT_LI TERAL { cg. gener at eConst Expr (num get Text ()); })

| #(str:STRING LI TERAL { cg. generateConst Expr(str.getText()); })
| procedure_call

| #(var:1D

i f(!semantics.isDefined(var.getText()) ||
semanti cs. synbol | sFunc(var . get Text ()))
error += "Undefined variable "+var.get Text()+"\n";
cg. gener at eConst Expr (var. get Text (), true);

)

’

procedure_call : #(pcall: PROCEDURE CALL
pname: | D

bool ean i sLi bFunc = semanti cs. synbol | sLi bFunc(pnane. get Text());
cg. gener at eProcedur eCal | (pnane. get Text (), i sLibFunc);

(argunents)?

String[] argList = semantics. get StoredArgunents();
if(!semantics.isDefined(pnane.getText()) ||
I'semant i cs. synbol | sFunc(pnane. get Text ()))
error += "Undefined function "+pnane. get Text()+"\n";
el se if(!semantics. mat chFuncAr gunent s(pnane. get Text (), argList))
error += "Bad function argunments supplied to "+pnane. get Text () +"\ n";
cg.rparen();

}
)
argunents: #(args: ARGUMVENTS

String[] argList = new String[args. get Nunber O Children()];
int ptr = 0;
}
v:tree_expr
{
argList[ptr] = semantics.inferType(v);
ptr++;

({ cg.witeComma(); } vl:tree_expr { argList[ptr] = semantics.inferType(vl);
ptr++ })*

semanti cs. st or eAr gunent s(argli st);

}
)

Appendix C: Java Code

MRRoboto.java

/***

* Jason Kopyl ec
* Programm ng Languages, 11/1/04

*

* Main Program for conpiling MRRoboto files
* Uses ANTLR generated Lexer, Parser and TreeWVal ker

*
**/

import java.io.*;

import antlr.CommonAST,;

import antlr.collections. AST;

i nport antlr.debug. m sc. ASTFr ane;

public class MRRoboto inplenments MRRobot oTokenTypes {

/1 Cbj ect vari abl es

private static String sourceFil eNang; //.mr file to be conpiled
private static String destinationFileNare; /l.java file to be outputted
private static bool ean showtree = fal se;

/***

MAIN(String[])

Takes a .mr file fromthe comrand |line and attenpts to
conpile into native Java.

*

*

*

* @aramargs - command |ine argunent indicating file

* to be parsed

*

* @utput - <filenane>.java with native java code or el se

* nmessages expl ai ning why conplilation was halted
*

**/

public static void main(String[] args) {

/] Parse argunents passed on the command |ine
i f(!parseCommandLi ne(args)) return;

//Run the ANTLR created Lexer and Parser and print AST

try {
FilelnputStreamfile = new

Fi | el nput St rean{ sour ceFi | eNane) ;

MRRobot oLexer | = new MRRobot oLexer (file);
MRRobot oPar ser p = new MRRobot oParser (1) ;
p.progran();

/Wl k parse tree and generate code
MRRobot oWl ker w = new MRRobot oVl ker () ;

//Tell the tree-wal ker's code generator what to nane
this file.

ComonAST fil ename = new CommonAST() ;

fil enane. set Type(ID);

fil enane. set Text (desti nati onFi | eNane) ;

w. createfile(fil enane);

w. firstpass((ComonAST) p.get AST());
w. progr an{ (ConmonAST) p. get AST());

// Open a window in which the AST is displayed
graphical ly
if(showtree) {
ASTFrane frane = new ASTFrane(" MRRobot o Program

Tree", p.getAST());
frame. setVisible(true);

E:atch(Exception e) { error(e.toString());}

/**

* PARSECOMVANDLI NE(STRING])

Parses command |ine and places argunents in object variables
Command Line should | ook |ike:

$j ava [directives] MRRoboto <fil ename. mr>

/h - prints conpiler usage
/? - prints conpiler usage

* Ok ok ¥k %k ok % F X

@aram String[] args - arguments passed from command |ine

**/

private static bool ean parseCommandLi ne(String[] args) {

//if there are no argunents, print file usage
if (args.|ength==0) {

print Usage();

return fal se;

}

[/ parse directives
for(int i=0; i<args.length-1; i++) {

/lprint usage for /h and /? directives
if (args[i].equal s("/showtree")) showtree = true;
el se {

error ("Unknown argurment.");

return fal se;

}

//Get filename to parse and ensure it ends with .nrr,
error if not
sourceFi | eName = args[args.|length-1];
if (sourceFileNane.endsWth(".mr")) {
destinationFi | eNane =
sour ceFi | eNarre. substring(0, sourceFi |l eNane. | ength() -4);

}

el se {
error("Source file nust have extension .nrr");
return fal se;

}

return true;

/***

* PRI NTUSAGE()
*
Prints conpiler command line and exit. Usage is:

*

*

* $java MRRoboto [<flags>] <filenane.nrr>
* /h - prints conpiler usage

* /? - prints conpiler usage
*
*
*
*

@utput - command |ine comrand for invoking the conpiler

**/

private static void printUsage() {

String usage = "** MRRoboto Conpiler 1.0 **" +
"\n\nUsage: $java MRRoboto [<fl ags>]
<filenane.nrr>" +
"\nFl ags: " +

"\n\t/showtree - displays program syntax
tree";

System out. printl n(usage);
Systemexit(0);

/***

* ERRCR(STRI NG
Print an error nessage and exit

*
*
*
* @aram String nsg - Text to display as error
*
* @utput - error nmessage and program hal t

*

*

**/

private static void error(String nmsg) {

Systemout. println("MRRoboto Conpiler Error: "+nsg);
Systemexit(1);

MRRobotoCodeGenerator .java

/***

* Jason Kopyl ec
* Programm ng Languages, 11/1/04
* Methods for generating code for MRRoboto Language

~k*/
import java.io.*;
public class MRRobot oCodeGenerator {

private final int indentAmt = 4;
private int curlndent;

private bool ean hasSt epAnt;
private bool ean arglList;

private String destFil eName;
private BufferedWiter destFile;
private StringBuffer fileContents;

publ i ¢ MRRobot oCodeGener at or () {
dest Fi | eName = "user";
fileContents = new StringBuffer("");
curlndent = 0;

}

public void created ass(String classnanme) {
dest Fi | eNane = cl assnane;

wite("//Generated by MRRoboto\n\n");

wite("public class "+classnanmet+" { \n\n");

nor el ndent () ;

wite(indent() + "public static MRRobotoLi brary nrRobotoLi brary;\n\n");
wite(indent() + "public static void main(String[] args) {\n");
nor el ndent () ;

wite(indent() + "nrRobotoLibrary = new MRRobot oLi brary();\n");
wite(indent() + "usermain();\n");

| essl ndent ();

wite(indent() + "}\n\n");

wite(indent() + "public static void usermain() { \n\n");

nmor el ndent () ;

}
private void wite(String text) { fileContents. append(text); }

private String indent() {
String spaces = "";
for(int i =0; i < curlndent; i++) spaces += " ";
return spaces;

}
private void norelndent() { curlndent += indentAnt; }

private void |l esslndent() {
if(curlndent >= indentAnt) curlndent -= indentAnt;
}

public void endCode(String err) {

| essl ndent () ;

wite(indent() + "}\n\n");

| essl ndent () ;

wite(indent() + "}\n");

if(err == null || err.equals("")) {

try {
destFile = new Buf f eredWiter (new
FileWiter(destFileNane+".java"));

destFile.wite(fileContents.toString());
destFile.close();

} catch (1 CException e) {
Systemout.printin("Error witing to '"+destFileNanme+"!': "+e);
Systemout.println("Source file creation aborted.");

} else {
Systemout.printin("Errors occurred while creating source file:");
Systemout. println(err.substring(0, err.length()-1));
Systemout.println("Source file creation aborted.");

}

public void generateComrent (String text) {
wite(indent() + "// "+text+"\n");

public void generateUserJava(String text) {
wite("// BEG N USER CODE\n");
wite(indent() + text + "\n");
wite(indent() + "// END USER CODR n");
}

public void generateVarDeclaration(String type, String id) {
if(type.equal s("string")) type = "String";
if(argList == false) {
//Start the java declaration, e.g. String abc =
wite (type + " " +id+ " =");

//lnitialize the variabl e depending on type
if (type.equals("String")) wite("\"\"");
if (type.equals("int")) wite("0");

} else {
wite(type + " " +id);

}

}

public void generateAssignnent (String id) {
wite(id +" =");
}

public void generateQ(String arg) {
wite(" " +arg + " ")
}

public void generateDirective(String arg) {
wite("" +arg + "");
}

public void generateEl se() {
| essl ndent () ;
wite(indent() + "} else {\n");
nor el ndent () ;

}

public void generateConst Expr(String arg) {
gener at eConst Expr (arg, false);
}

public void generateConstExpr(String arg, boolean isVar) {
if(isvVar) wite("" + arg +"");

else if(arg.charAt(0) ==""")
wite("\"" + arg.substring(1) + "\"");
el se

wite("" +arg + "");

}
public void Iparen() { wite("("); }
public void rparen() { wite(")"); }

public void witelndent() { wite(indent()); }

public void endline() { wite(";\n"); }
public void witeComma() { wite(", "); }

public void generateProcedureCall (String procNane, boolean isLib) {
if(isLib) wite("nrRobotolLibrary.");
wite(procNane + "(");

public voi d generateProcedureDecl aration(String procNane, String type) {
/I Finish the | ast procedure
| essl ndent () ;
wite(indent() + "}\n\n");

/lwite java procedure declaration

if(type.equal s("string")) type = "String";

wite(indent() + "public static "+type+" " + procName + "(");
nor el ndent () ;

}

public void cl oseProcedureDecl aration() {
wite(") {\n");

public void startArgunentList() { argList = true; }
public void endArgurmentList() { argList = false; }

public void generateConditional () {
wite("if(");
}

public void closeConditional () {
wite(") {\n");
nor el ndent () ;

}

public void closeBlock() {
| essl ndent () ;
wite(indent() + "}\n");

}

public void generateForLoop(String index) {
wite("for("+index+" =");
hasSt epAnt = fal se;

}

public void continueForLoop(String index) {

wite("; "+index+' <= ");

public void conpl et eFor Loop(String index) {
wite("; "+index+" +=");

public void generateStep() {
hasSt epAnt = true;
}

public void closeForLoop() {
if(!'hasStepAnt) wite("1");
wite(") {\n");
nor el ndent () ;

}

public void generateWil eLoop() {
wite("while(");
}

public void cl oseWileLoop() {
wite(") {\n");

nor el ndent () ;

}

public void stringConp() {
write(".conpareTo(");
}

public void stringConp2(String op) {
wite(") "+opt+"");

MRRobotoL ibrary.java

/***

* Jason Kopyl ec
* CS4115 Progranm ng Languages
10/ 21/ 04

*

*

* This obj ect holds all the library functions for the
* MR Roboto Language. This object is created in the
* conpiled user programand the library calls fromthe
* source file are converted into calls fromthis class
*
*

kkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkhxkdxk*x*xk***x*%x *************/

import java.awt.*;
import java.awt.event.*;
i mport java.lang. *;
import java.io.*;

inport java.util.*;
inmport java.util.regex.*;

public class MRRobotolibrary {

/1 Cbj ect vari abl es
public Robot robot; //Robot that controls the screen
private HashMap keys; //holds napping from keyboard character to keycode

publ i ¢ MRRobot oLi brary() {
//Constructor that initilizes java robot and sets environnent variables

/linitialize variables

try {
robot = new Robot ();

}
cat ch(AWException e) {

error("Unable to Initialize Java Robot");
}

/1 Load keys with keynap
get KeyMap() ;

public void nmouseMove(int x, int y) {
//Library function that noves the nouse to the point (x,y)

robot . nouseMve(x, y);

public void nouseHol d(int time) {

//Library function that holds down the left nmouse button for a specified tine
r obot . mousePr ess(| nput Event . BUTTONL_MASK) ;
wai t(tine);
r obot . mouseRel ease(| nput Event . BUTTONL_NASK) ;

public void click() {
/lLibrary function that clicks the left nouse button once at its current |ocation

i nt autodel ay = robot. get Aut oDel ay();
setWait (0);

robot . mousePr ess(| nput Event . BUTTONL_MASK) ;

r obot . mouseRel ease(| nput Event . BUTTONL_NASK) ;
set Wi t (aut odel ay) ;

wai t (aut odel ay) ;

public void nmoveAndd ick(int x, int y) {
/I Move the nouse to the screen position (x,y) and click the I eft nouse button once

nmouseMove(X, Y);
click();

public void rightdick() {
//dick the right nouse button at the current nouse position

i nt autodel ay = robot. get Aut oDel ay();

set Wit (0);

robot . mousePr ess(| nput Event . BUTTON3_MASK) ;

r obot . mouseRel ease(| nput Event . BUTTON3_MASK) ;
set Wai t (aut odel ay) ;

wai t (aut odel ay) ;

public void moveAndR ghtdick(int x, int y) {
//dick the right nouse button at the point (x,Y)

nmouseMove(X, Y);
rightdick();

public void doubledick() {
//Double click the left nmouse button at the current cursor position

click();
wai t (40);
click();

public void noveAndDoubl ed ick(int x, int y) {
//Double click the | eft nbuse button at screen position (x,y)

nouseMove(x, y);
doubl ed i ck();

public void wait(int msecs) {
//delay for msecs nmiliseconds

robot . del ay(nsecs);

public void setWait(int nmsec) {
//Delay for nsec miliseconds after generating robot events

robot . set Aut oDel ay(nsec) ;

public void error(String nmsg) {

/1D splays an error nessage and exits, used when fatal errors have occured
Systemout. println("JAVA RUNTI ME ERROR " + nsg);
Systemexit(0);

public void type(String text) {
/1 gener ate keyboard events for each character in the string
/1l nvisible keys are put in between pipes, e.g. "|TAB"

[/ Turn off delay so typing is fast
i nt aut odel ay = robot. get Aut oDel ay();
setWait(0);

String curChar;
i nt next Char;

whil e(text.length()!=0) {
curChar = text.substring(0,1);

/11f the next string is an escape code, e.g. "| ENTER ",
pass the whol e word
if (!curChar.equals("|")) {
press(curChar);
text = text.substring(l,text.length());

el se {
//Pass all the characters including |'s
next Char = text.indexCr("|",1);
if (nextChar==1) error("Invalid Escape Character -
Mssing |:\n" "+text+""");
curChar = text.substring(0, next Char+1);
//handl e the case when the character to print is '|'
if (curChar.equals("")) curChar = "|";
press(curChar);
text = text.substring(nextChar+l,text.length());
}

}

//Set autowait back to its previous val ue
set Wi t (aut odel ay) ;
wai t (aut odel ay) ;

private void press(String text) {
//H ts one key on the keyboard, text

hol d(text);
rel ease(text);

public void hold(String text) {
//Press the key, text, down, used with release() and rel easeall ()
// Takes only one character (or escape code)

[lerror if nmore than one key is passed
if (text.length()==0) error("Error calling hold(): cannot
accept null string \"\"");

/11f key is an escape code, strip off start and end '|'s
if (text.length()>2 &% text.substring(0,1).equals("|")) text =
text.substring(1,text.length()-1);

//convert key to its java key code
if (needsShift(text)) hold("SH FT");
int kcode = get KeyCode(text);

robot . keyPr ess(kcode) ;

public void release(String text) {
/I Rel eases the keyboard key, text, used with hol d()

[lerror if more than one key is passed
if (text.length()==0) error("Error calling hold(): cannot
accept null string \"\"");

/11f Kkey is an escape code, strip off start and end '|'s
if (text.length()>2 &% text.substring(0,1).equals("|")) text =
text.substring(l,text.length()-1);

/lconvert key to its java key code

int kcode = get KeyCode(text);

robot . keyRel ease(kcode) ;

i f (needsShift(text)) release("SH FT");

public void releaseAl () {
//rel ease any keys that are currently held down, works with hol d()

}

private int getKeyCode(String text) {
/1 Text shoul d be one keyboard character, returns the java key code for that character

I nteger keyindex = (Integer)keys. get(text);
if (keyindex == null) error("Keyboard key not found '" + text +

)
}

return keyi ndex. i ntVal ue();

private void get KeyMap() {
//Called by the constructor to create the table for nmapping from keyboard key fromstring
text

keys = new HashMap();

/11 owercase letters

addKey("a", KeyEvent.VK_A);
addKey("b", KeyEvent.VK B);
addKey("c", KeyEvent.VK O);
addKey("d", KeyEvent.VK D);
addKey("e", KeyEvent.VK E);
addKey("f", KeyEvent.VK F);
addKey("g", KeyEvent.VK O;
addKey("h", KeyEvent.VK H);
addKey("i", KeyEvent.VK_ I|);
addKey("j", KeyEvent.VK J);
addKey("k", KeyEvent.VK K);
addKey("l", KeyEvent.VK L);
addKey("m', KeyEvent.VK_M;
addKey("n", KeyEvent.VK_N);
addKey(" 0", KeyEvent.VK O;
addKey("p", KeyEvent.VK P);
addKey("q", KeyEvent.VK Q;
addKey("r", KeyEvent.VK R);

addKey("s", KeyEvent.VK_ S);
addKey("t", KeyEvent.VK T);
addKey("u", KeyEvent.VK U);
addKey("v", KeyEvent.VK V);
addKey("w', KeyEvent.VK_ W;
addKey("x", KeyEvent.VK X);
addKey("y", KeyEvent.VK0Y)
addKey("z", KeyEvent.VK Z7)

[l uppercase letters

addKey(" A", KeyEvent.VK A);
addKey("B", KeyEvent. VK B)
addKey("C', KeyEvent.VK O);
addKey("D', KeyEvent.VK D);
addKey("E", KeyEvent.VK E)
addKey("F", KeyEvent.VK F);
addKey("G', KeyEvent.VK Q;
addKey("H', KeyEvent.VK H);
addKey("1", KeyEvent.VK_l);
addKey("J", KeyEvent.VK_ J);
addKey("K", KeyEvent. VK K)
addKey("L", KeyEvent.VK_ L);
addKey("M', KeyEvent.VK M ;
addKey("N', KeyEvent.VK_N);
addKey("O', KeyEvent.VK O;
addKey("P", KeyEvent. VK P)
addKey("Q', KeyEvent.VK Q;
addKey("R', KeyEvent.VK R);
addKey("S", KeyEvent.VK_S)
addKey("T", KeyEvent.VK T);
addKey("U', KeyEvent.VK U);
addKey("V', KeyEvent.VK V);
addKey("W, KeyEvent.VK W;
addKey(" X', KeyEvent. VK X)
addKey("Y", KeyEvent. VK Y)
addKey("Z", KeyEvent.VK 2);

/ I nunber s

addKey("1", KeyEvent.VK 1);
addKey("2", KeyEvent.VK 2)
addKey("3", KeyEvent.VK 3);
addKey("4", KeyEvent.VK_4)
addKey("5", KeyEvent.VK 5);
addKey("6", KeyEvent. VK 6);
addKey("7", KeyEvent.VK 7);
addKey("8", KeyEvent.VK_8)
addKey("9", KeyEvent.VK 9);
addKey("0", KeyEvent.VK_0)

/I Msc printable chars
addKey(" ", KeyEvent. VK SPACE)
addKey("!", KeyEvent.VK_ 1)
addKey(" @, KeyEvent.VK 2);
addKey("#", KeyEvent. VK 3);
addKey("$", KeyEvent.VK_ 4);
addKey("% , KeyEvent. VK 5)
addKey(""", KeyEvent.VK 6);
addKey("&", KeyEvent.VK 7)
addKey("*", KeyEvent.VK 8);
addKey(" (", KeyEvent.VK 9)
addKey(")", KeyEvent.VK 0)
addKey("-", KeyEvent.VK M NUS);
addKey("_", KeyEvent.VK M NUS);
addKey("+", KeyEvent.VK EQUALS)
addKey("=", KeyEvent.VK_ EQUALS)
addKey("[", KeyEvent.VK OPEN BRACKET);
addKey("{", KeyEvent.VK_OPEN_BRACKET) ;
addKey("]", KeyEvent.VK CLOSE BRACKET) ;

addKey("}"

KeyEvent

. VK_CLOSE_BRACKET) ;

addKey("\\", KeyEvent. VK _BACK SLASH);
addKey("|", KeyEvent.VK BACK SLASH);
addKey(";", KeyEvent.VK_SEM COLON);
addKey(":", KeyEvent.VK_SEM COLON);
addKey("'", KeyEvent.VK_QUOTE);

addKey(" DOUBLE_QUOTE", KeyEvent.VK_QUOTE);

addKey(",", KeyEvent.VK COWA) ;
addKey("<", KeyEvent.VK _COWA);
addKey(".", KeyEvent.VK PERI CD);

addKey("/", KeyEvent.VK SLASH);

addKey(">" KeyEvent . VK _PER QD)
addKey(" 2", KeyEvent . VK_SLASH) :

/11 nvisible Characters

addKey("F1", KeyEvent.VK F1);
addKey("F2", KeyEvent.VK F2);
addKey("F3", KeyEvent.VK F3);
addKey("F4", KeyEvent.VK F4);
addKey("F5", KeyEvent.VK F5);
addKey("F6", KeyEvent.VK F6);
addKey("F7", KeyEvent.VK F7);
addKey("F8", KeyEvent.VK F8);
addKey("F9", KeyEvent.VK F9);

addKey(" F10", KeyEvent.VK F10);
addKey (" SH FT", KeyEvent.VK_SH FT);
addKey("ENTER', KeyEvent. VK _ENTER);
addKey(" TAB", KeyEvent.VK TAB);
addKey("ESCAPE", KeyEvent. VK _ESCAPE);
addKey("ALT", KeyEvent.VK_ ALT);

addKey (" CONTROL", KeyEvent. VK _CONTRQL);
addKey(" CAPS LOCK", KeyEvent.VK CAPS LOCK);
addKey (" DELETE', KeyEvent.VK DELETE);
addKey (" BACK_SPACE", KeyEvent.VK BACK SPACE);
addKey("DOM', KeyEvent. VK DOM) ;
addKey("UP", KeyEvent.VK UP);
addKey("LEFT", KeyEvent.VK_LEFT);
addKey(" R GHT", KeyEvent. VK Rl GHT);
addKey("HOVE', KeyEvent.VK HOVE);
addKey("END', KeyEvent.VK_END);

addKey ("1 NSERT", KeyEvent.VK_| NSERT);

addKey(" PRI NTSCREEN', KeyEvent . VK_PRI NTSCREEN) ;

addKey(" PAGE_DOM', KeyEvent.VK_PAGE_DOM) ;
addKey(" PAGE_UP', KeyEvent.VK PACGE UP);
addKey (" NUM LOCK", KeyEvent . VK_NUM _LOCK) ;

private void addKey(String key, int val) {
//Place a key to value napping in the keys HashMap

keys. put (key, new Integer(val));
}

private bool ean needsShift(String key) {
//Returns true if the shift key is required to print the character
/1 Java sucks because it needs to use shift to get |ower case letters

//if key is a double quote, return true
i f(key. equal s("DOUBLE_QUOTE")) return true;

String testPattern = "[AZA"]";

String otherChars = "~ @$%W& ()_+{}]|:<>?";
return Pattern. natches(testPattern, key) ||
(ot her Chars. i ndexOr (key. charAt (0)) !'= -1);

}

public void exec(String cnd) {
/| Executes a shell command, cnd
try {
Runtine rt = Runtine.getRuntime();
rt.exec(cnd);
wai t (robot . get Aut oDel ay());

E:atch(Exception e) {error(e.toString());}

public void print(String text) {
//Print text to console w ndow

Systemout.println(text);

public void printInt(int text) {

/IPrint integer to consol e wi ndow
print(""+text);

}

public String substring(String x, int start, int finish) {
//return a substring of x fromposition start to finish
//if finish is greater than string length, whole string is returned

int I = x.length();

[lif start is negative, or

//start is greater than the length of x return "" or
/lor if start > finish

if (start<0 || start>l || start > finish) return"";

/1if start > x.length return upto the end of the string
if (finish>) return substring(x, start, x.length());

return x.substring(start, finish);

public int length(String x) {
//Return the length of the string x

return x.length();

public String pc(int x, int y) {

//Return pixel color at (x,y) in the form RRGGEBB

//where rgb are hex val ues
Col or ¢ = robot. get Pi xel Col or(x,vy);
String r,g,b;

r = Integer.toHexString(c.getRed()).toUpperCase();
if (r.length()==1) r = "0"+r;

g = Integer.toHexString(c.getGeen()).toUpperCase();
if (g.length()==1) g = "0"+g;

b = Integer.toHexString(c.getBlue()).toUpperCase();
if (b.length()==1) b = "0"+b;

return r+g+b;

MRRSemanticAnalyzer .java

/* MRRSemanti cAnal yzer.java

Semantic checks for the MRRoboto | anguage.
Coded by Adam Marczyk

Col unbi a University, Fall 2004

/

* Ok Kk *

import java.util.Stack;
import java.util.Vector;
import antlr.collections. AST;

/* The MRRSemanti cAnal yzer class stores synbol tables, does type checking,
and carries out various other aspects of senmantic analysis on
MRRobot o | anguage code. */

public class MRRSemanti cAnal yzer {

/* A single synbol table holds all synbols of global scope.
There are no global variables, so this consists solely of function nanes.
This table is built up on our first pass through the program source. */
private MRRSynbol Tabl e gl obal ;

/* A stack of synbol tables holds all synbols of |ocal scope.
This will consist of variables local to a particular block of code.
This table is built up on our second pass through the source. */
private Stack local;

/* Tenporary lists to hold the nunber and types of arguments
a function expects. */

private Vector argunentlList;

private String[] storedArgs;

/* Alist of valid types of variables. */
private Vector varTypes;

/* Flags to indicate where we currently are in the program
-whether we're in a loop (value = depth of nesting)
-whether we're in a function (value = function nane)
-whether any further statenents we encounter are unreachable
-whet her a function expects a return statenent
-whether a function that expects a return statenent has one

*/

private int inLoop;

private String inFunction;

private bool ean unreachabl e;

private bool ean needsReturn;

private bool ean hasReturnStnt;

public MRRSemanti cAnal yzer () {
gl obal = new MRRSynbol Tabl e();
| ocal = new Stack();
argurent Li st = new Vector();
var Types = new Vector();

inLoop = 0;

unreachabl e = fal se;
hasReturnStnt = fal se;
needsReturn = fal se;
inFunction = null;

var Types. add("int");
var Types. add("string");

String[] onelnt = {"int"};

String[] oneString = {"string"};
String[] twolnts = {"int","int"};
String[] arg4 = {"string","int","int"};
String[] enpty = new String[0];

/* Add all nanes of library functions as globally scoped synbols. */
addd obal Synbol (" mouseMove", new MRRSynbol ("void", twolnts, true));
addd obal Synbol (" nouseHol d*, new MRRSynbol ("voi d", onelnt, true));
addd obal Synbol ("click", new MRRSynbol ("void", enpty, true));

addd obal Synbol (" nmoveAndd i ck", new MRRSynbol ("void", twolnts, true));
addd obal Synbol ("rightdick", new MRRSynbol ("void", enpty, true));
addd obal Synbol (" noveAndR ght A i ck", new MRRSynbol ("void", twolnts, true));
addd obal Synbol ("doubl ed i ck", new MRRSynbol ("void", enpty, true));
addd obal Synbol (" noveAndDoubl ed i ck”, new MRRSynbol ("voi d", twolnts, true));
addd obal Synbol ("wait", new MRRSynbol ("voi d", onelnt, true));

addd obal Synbol ("setWait", new MRRSynbol ("void", onelnt, true));

addd obal Synmbol ("type", new MRRSynbol ("voi d', oneString, true));

addd obal Synbol (" press”, new MRRSynbol ("void", oneString, true));

addd obal Synbol (" hol d", new MRRSynbol ("voi d", oneString, true));

addd obal Synbol ("rel ease", new MRRSynbol ("void", oneString, true));
addd obal Synbol ("rel easeAl | ", new MRRSynbol ("voi d", enpty, true));
addd obal Synbol ("exec", new MRRSynbol ("void", oneString, true));

addd obal Synbol ("print", new MRRSynbol ("void", oneString, true));
addd obal Synmbol ("printint", new MRRSynbol ("void", onelnt, true));

addd obal Synbol ("substring", new MRRSynbol ("string", arg4, true));
addd obal Synbol ("I engt h", new MRRSynbol ("int", oneString, true));
addd obal Symbol ("pc", new MRRSynbol ("string", twolnts, true));

/* Also add all Java reserved words, so they can't be used as variabl es
or function nanes. */

addd obal Synbol ("abstract", "void");

addd obal Synbol ("assert", "void");

addd obal Synbol ("bool ean", "void");

addd obal Synbol ("break", "void");

addd obal Synbol ("byte", "void");

addd obal Synbol ("case", "void");

addd obal Synmbol ("catch", "void");

addd obal Synbol ("char", "void");

addd obal Synbol ("cl ass", "void");

addd obal Synbol ("const", "void");

addd obal Synbol (" conti nue", "void");

addd obal Synbol ("default", "void");

addd obal Synbol ("do", "void");

addd obal Synbol ("doubl e", "void");

addd obal Synbol ("el se", "void");

addd obal Synbol ("extends", "void");

addd obal Synbol ("fal se", "void");

addd obal Synbol ("final", "void");

addd obal Synbol ("finally", "void");

addd obal Synbol ("float", "void");

addd obal Synbol ("for", "void");

addd obal Synbol ("goto", "void");

addd obal Synbol ("i f", "void");

addd obal Synbol ("i npl enents", "void");

addd obal Synbol ("i nport", "void");

addd obal Synbol ("i nstanceof", "void");

addd obal Synbol ("int", "void");

addd obal Synbol ("interface", "void");

addd obal Synbol ("1 ong", "void");

addd obal Synbol ("mai n", "void");

addd obal Synbol ("native", "void");

addd obal Synbol ("new', "void");

addd obal Synbol ("nul I ", "void");

addd obal Synbol (" package", "void");

addd obal Synbol ("private", "void");

addd obal Synbol ("protected", "void");

addd obal Synbol (" public", "void");

addd obal Synbol ("return", "void");

addd obal Symbol ("short", "void");

addd obal Synbol ("static", "void");

addd obal Synbol ("strictfp", "void");

addd obal Synbol ("super", "void");

addd obal Synbol ("swi tch", "void");

addd obal Synbol ("synchroni zed", "void");

addd obal Synbol ("this", "void");

addd obal Synbol ("throw', "void");

addd obal Synbol ("t hrows", "void");
addd obal Synbol ("transient", "void");
addd obal Synbol ("true", "void");
addd obal Synbol ("try", "void");

addd obal Synbol ("voi d", "void");
addd obal Synbol ("vol atile", "void");
addd obal Synmbol ("while", "void");

/* A so reserve MRRoboto keywords. */

addd obal Synbol ("to", "void");

addd obal Synbol ("step", "void");

addd obal Synbol ("end", "void");

addd obal Synbol (" procedure", "void");

addd obal Synbol ("error", "void");

addd obal Synbol (" nr Robot oLi brary", "void");
}

/* Statements beyond this point are unreachable, unless we exit

a level of scope. Called after break, continue and return directives.

public void setUnreachabl e() { unreachable = true; }
public bool ean unreachabl e() { return unreachable; }

/* Keep track of whether we're inside a while or for I|oop.
Used to decide whether a break or continue directive is valid. */
public voi d beginLoop() { inLoop++; }

public void exitLoop() { inLoop++; }
publ i ¢ bool ean inLoop() { return (inLoop > 0); }

/* Keep track of whether we're inside a function, and if so, which one.
Used to decide whether a return directive is valid. */
public void enterFunction(String name) { inFunction = nane; }

public void exitFunction() {
inFunction = null;
needsReturn = fal se;
hasReturnStnt = fal se;

}

public String inFunction() { return inFunction; }

/* Keep track of whether a function needs a return statenent
(i.e., anon-void function), and if so, whether it has one. */
public void set NeedsReturn() { needsReturn = true; }

publ i ¢ bool ean get NeedsReturn() { return needsReturn; }
public void setReturn() { hasReturnStnmt = true; }
public void clearReturn() { hasReturnStnt = false; }
publi ¢ bool ean hasReturnStnt() { return hasReturnStnt; }

/* As we wal k the subtree containing arguments provided to a
function, store themin a list. Used to keep track
of whether the argunents in a function call match those
in the function definition. */

public void storeArgunments(String[] list) { storedArgs = list; }

public String[] getStoredArgunents() {
if(storedArgs == null) return new String[O0];
String[] tnmp = storedArgs;
storedArgs = nul l;
return tnp;

}

/* Functions can only be of global scope, so that's the only
synmbol table we need to check. */
publ i ¢ bool ean nmat chFuncArgunents(String name, String[] args) {

*/

return gl obal . nat chFuncAr gunent s(nane, args);

}

/* Determ ne whether a particular type is defined for this |anguage. */
public bool ean isValidType(String t) {

i f(varTypes.indexOr(t) !=-1) return true;

return fal se;

}

/* Add a synbol to global scope. Return 1 if the add was successful,
-1 if this synbol was already defined in the gl obal scope. */
public int addd obal Synbol (String nane, MRRSynbol s) {
i f(global.isDefined(nane)) return -1;
gl obal . addSynbol (nane, s);
return 1,

}

/* Pol ynor phi c version of the above function. */
public int addd obal Synmbol (String name, String s) {

return addd obal Synbol (nanme, new MRRSynbol (s));
}

/* Add a synbol to the current |ocal scope (i.e., the synbol table

on top of the stack). Return 1 if the add was successful,

-1 if this synbol was already defined in any accessible scope. */
public int addSynbol (String name, MRRSynbol s) {

i f(isDefined(nanme)) return -1;

MRRSynbol Tabl e st = (MRRSynbol Tabl e) | ocal . peek();
st. addSynbol (nane, s);
return 1;

}

/* Pol ynor phi c version of the above function. */

public int addSynbol (String nane, String s) {
return addSynbol (name, new MRRSynbol (s));

}

[* Check whether a synbol is already defined within any accessibl e scope.
The first thing we have to check is whether it's defined in the
gl obal scope. |If not, we have to check whether it's defined in the current
| ocal scope or any accessible scope enclosing the | ocal scope. */
publ i c bool ean i sDefined(String nane) {
MRRSynbol Tabl e t np;
i f(global.isDefined(nanme)) return true;
for(int i =0; i < local.size(); i++) {
tmp = (MRRSynbol Tabl e)l ocal . get (i);
if(tnp.isDefined(nane)) return true;

return fal se;

}

/* Check whether a synbol is a function (if not, it's a variable). */
publ i ¢ bool ean synbol | sFunc(String nanme) {
if(!global.isbDefined(name)) return false;
return gl obal . synbol | sFunc(nane);

}

/* Check whether a synbol is a built-in |language function. */
public bool ean synbol | sLi bFunc(String nanme) {
if(!global.isbDefined(nanme)) return false;
i f (gl obal . synbol | sFunc(nane) == fal se) return fal se;
return gl obal . synbol I sLi bFunc(nane);

}

/* Enter a new | evel of scope. */

public void enterScope() {
MRRSynbol Tabl e st = new MRRSynbol Tabl e() ;
| ocal . push(st);

}

/* Leave a |l evel of scope. Synbols defined within it disappear. */

public void | eaveScope() ({
| ocal . pop();
unr eachabl e = fal se;

}

/* Determine the type of an accessible synbol. Return null if the
argument is not a defined synbol. */
public String | ookupType(String nane, bool ean nodel sFnCall) {
MRRSynbol Tabl e t np;
i f(gl obal .isDefined(nane) && gl obal . synbol | sFunc(nane) == nodel sFnCal I)
return gl obal . get Synbol Type(nane);
for(int i = 0; i < local.size(); i++) {
tnmp = (MRRSynbol Tabl e) | ocal . get (i);
i f(tnp.isDefined(nane) && tnp.synbol | sFunc(nane) == nodel sFnCal |)
return tnp. get Synbol Type(namne);
}

return "void";

}

public String | ookupType(String nane) {
return | ookupType(nane, false);
}

/* Determine the type of a node in the abstract syntax tree.
This node nay be either an operator, a literal, or a variable.
Notice that no recursion is necessary here, as all decisions
can be made locally. */

public String inferType(AST root Node, bool ean nodel sFnCal |) {

String text = root Node. get Text();

String type;
if(text.equal s("+") || text.equals("-") || text.equals("*") || text.equals("/"))
type = "int";
else if(text.equals("<") || text.equals(">") || text.equal s("<=")
|| text.equals(">=") || text.equals("==") || text.equals("<>"))
type = "conparator";
el se if(text.equal s("&&") || text.equals("||"))
type = "bool ean";

el se if(text.equal s("++"))
type = "string";
else if(text.equal s("="))
type = inferType(rootNode.getFirstChild());
/li.e., an assignnent operator has the same type as its |val ue

el se if(text.equal s("PROCEDURE_CALL"))
type = inferType(rootNode.getFirstChild(), true);
//also, a function call has the sane type as the function's return type

/* Otherwise, this node is either a variable or a literal; in either case,
we can safely determne its type. */
else if(text.charAt(0) ==""")

type = "string";
else if(isDefined(text))
type = | ookupType(text, nodel sFnCall);
el se {
try {
I nt eger. parselnt(text);
type = "int";
} catch(Nunber For mat Exception e) {
type = "void";

return type;

}

public String inferType(AST root Node) {
return inferType(root Node, false);
}

/* Ensure that the actual type of a node matches what we think it is. */
publ i c bool ean verifyType(AST node, String type) {
return inferType(node).equal s(type);

}

/* Verify that the types of synbols in an expression match. This is
done via an exam nation of the expression subtree; we nust ensure
that the operator (the root of the tree) and its children (its operands)
all have the sanme type. Notice that no recursion is necessary here,
as all decisions can be nade |ocally. */

public String checkTypes(AST root Operator, AST childl, AST child2) {
String op, cl, c2;
String opType, clType, c2Type;

op = root Qperator.get Text();

cl = childl. get Text();

i f(cl.equal s("PROCEDURE_CALL")) cl
c2 = child2. get Text();

i f(c2.equal s("PROCEDURE_CALL")) c2

childl.getFirstChild().getText() + "()";

child2.getFirstChild().getText() + "()";

opType = inferType(root Qperator);
clType = inferType(childl);
c2Type = inferType(child2);

//Void type matches nothing, not even itself.

i f (opType. equal s("void") || clType.equal s("void") || c2Type.equal s("void"))

return "Type m snmatch between "+op+" ("+opType+"), "+cl+" ("+clType+"), "+c2+"
("+c2Type+")";

/* null return value means our types check out. */
i f(opType. equal s("conparator") && clType. equal s(c2Type) &&
(clType. equal s("int") || clType.equal s("string"))) return null;
el se if(opType. equal s("bool ean") &&
(c1Type. equal s("conparator") || clType.equals("bool ean")) &&
(c2Type. equal s("conparator") || c2Type. equal s("bool ean"))) return null;
el se if(opType. equal s(clType) && clType. equal s(c2Type)) return null;

/* Otherwise return a string with detailed error information. */
return "Type m snmatch between "+op+" ("+opType+"), "+cl+" ("+clType+"), "+c2+"
(" +c2Type+")";
}

/* Store the type of the next argument taken by the current function. */
public void addArgunent (String type) {

argunent Li st. add(type);
}

/* \W've processed all the argunments. Put this function on the synbol table. */
public void stopStoringArgunents(String funcName, String funcType) {
String[] tnmp = new String[argunentList.size()];
for(int i = 0; i < argunentList.size(); i++)
tmp[i] = (String)argunentList.get(i);
addd obal Synbol (funcNane, new MRRSynbol (funcType, tnp));
argurent Li st. clear();

}
/* 1 npl emrentati on Notes:
* Building the synbol table requires two passes through the AST.
* Qur gramrar | ooks sonething |ike this:
* program -> mai n_bl ock (function_decl aration)*
* and so our AST will look like this:
* program
* -> mai n_bl ock
* -> functionl
* -> function2
* etc.
* Qur first pass through the tree is trivial: do a one-level breadth-first search
* fromthe root, capture all function declarations, and put the nanes of
* those functions in the gl obal synbol table.
* Qur second pass through the tree proceeds in nornal depth-first fashion:
* each time we enter a scope, push a new | evel on the stack, add synbol s
* defined in that scope to the top synbol table on the stack, and pop the stack
* when we | eave that scope.
*

The | ocal synbol table is different for each bl ock; the global synbol table

* never changes.

* A synbol is considered to be defined if it is defined in the gl obal scope
* or in the local scope; therefore we cannot, for exanple, have a variable
* with the sane name as a function. W can, however, have two functions

* each of which has a local variable with the sane nane.

*/

MRRSymbol.java

/* MRRSynbol . j ava

* Part of the semantic checker for the MRRoboto | anguage.
* Coded by Adam Mar czyk

* Col unbi a University, Fall 2004

*/

/* The MRRSynbol class represents a single synbol in a synbol table. */
public class MRRSymbol {

/* The type of this synbol (integer, string, etc). */
private String type;

/* If this synbol is a function, args.length is the nunber of argunents it
takes, and args[n] is the type of its nth argunent. */
private String[] args;

/* True if this synbol is a function. */
private bool ean i sFunc;

/* True if this synbol is a predefined library function. */
private bool ean isLi bFunc;

/* Basic constructor for a non-function synbol. */
public MRRSynbol (String t) {

type = t;

i sFunc = fal se;

}

/* Basic constructors for a function synbol. */
public MRRSynbol (String t, String[] a) {
type
args ;
i sFunc = true;
i sLi bFunc = fal se;

[

}
public MRRSynbol (String t, String[] a, boolean x) {
type = t;
args = a;
i sFunc = true;
i sLi bFunc = x;
}

public String getType() { return type; }

public bool ean isFunction() { return isFunc; }
public bool ean isLibFunction() { return isLibFunc; }
public int getNumArgs() { return args.length; }

public String get ArgType(int argNum) { return args[argNuni; }

MRRSymbol Table.java

/* MRRSynbol Tabl e. j ava

* Part of the semantic checker for the MRRoboto | anguage.
* Coded by Adam Mar czyk

* Col unbi a University, Fall 2004

*/

import java.util.HashMap;

/* The MRRSynbol Tabl e cl ass represents a single scope within the entire programs
synbol table. */
public class MRRSynbol Tabl e {

private HashMap tabl e;

publ i c MRRSynbol Tabl e() {
tabl e = new HashMap();
}

/* Add a synbol to this scope, indexed by its nane. */

public void addSynbol (String synbol Nane, MRRSynbol s) {
tabl e. put (synbol Nane, s);

}

/* Determ ne whether a given synbol is defined in this scope. */
publ i c bool ean isDefined(String synbol Nane) {

return tabl e. cont ai nsKey(synbol Nane) ;
}

/* Return the type of a given synbol, indexed by its name. */
public String getSynmbol Type(String synbol Nane) {

i f(!isDefined(synbol Name)) return nul |;

return ((MRRSynbol)t abl e. get (synbol Nane)) . get Type();

/* Return whether a given synbol is a function. */
publ i ¢ bool ean symnbol | sFunc(String synbol Nanme) {
i f(!isDefined(synbol Nane)) return fal se;
return ((MRRSynbol)t abl e. get (synbol Nane)). i sFunction();

}

/* Return whether a given synbol is a library function. */
publ i ¢ bool ean synbol | sLi bFunc(String synbol Name) {

i f(!isDefined(synbol Nane)) return fal se;

return ((MRRSynbol)t abl e. get (synbol Nane)) . i sLi bFunction();

/* Determ ne whether a provided list of argument types matches
the actual arguments defined for a given synbol that
happens to be a function. */

publi c bool ean mat chFuncArgunents(String func, String[] args) {
if(!isDefined(func) || !synbollsFunc(func)) return false;
MRRSynbol tnmp = (MRRSynbol)t abl e. get (func);
if(args.length !'= tnp.get NumArgs()) return fal se;
for(int i =0; i < args.length; i++) {

if(largs[i].equal s(tnp.get ArgType(i))) return false;
}

return true;

Appendix D: RobotoXY

RobotoXY is a helper program to aid in developing MRRoboto programs. It runsas a
Windows application and displays a constant reading of the screen coordinates and pixel
color of the current mouse position.

x

(72, 132] RGE:F7F7F7
RobotoXY.exe Program

RobotoXY.vbs

‘ *** Robot oXY. exe
‘*** Coded by Jason Kopyl ec

Option Explicit
Private Const SWP_NOMOVE = 2
Private Const SWP_NOSIZE = 1
Private Const FLAGS = SWP_NOMOVE O SWP_NOSI ZE
Private Const HWND TOPMOST = -1
Private Const HWND NOTOPMOST = -2

Private Type PO NTAPI
x As Long
y As Long
End Type
Private Declare Function GetCursorPos Lib "user32" (I|pPoint As PO NTAPI) As Long
Private Declare Function ScreenToCient Lib "user32" (ByVal hwnd As Long,
| pPoi nt As PO NTAPI) As Long

Private Declare Function GetPixel Lib "gdi32" (ByVal hdc As Long,
ByVal x As Long, ByVal y As Long) As Long

Private Declare Function Get WndowDC Lib "user32" (ByVal hwnd As Long) _
As Long

Private Declare Function Set WndowPos Lib "user32" (ByVal hwnd As Long, ByVal
hWhdl nsert After As Long, ByVal x As Long, ByVal y As Long, ByVal cx As Long, ByVal cy As
Long, ByVal wFl ags As Long) As Long

Publ i ¢ Function Set TopMost Wndow hwnd As Long, Topnost As Bool ean) _
As Long

I f Toprmost = True Then ' Make the w ndow t opnost
Set TopMost W ndow = Set W ndowPos(hwnd, HWD TOPMOST, 0, 0, O,

0, FLAGS)
E se
Set TopMbst W ndow = Set W ndowPos(hwnd, HWND_NOTOPMOST, 0, O,
0, 0, FLAGS)
Set TopMbst W ndow = Fal se
End If

End Function

CGet nmouse X coordinates in pixels

" If a window handle is passed, the result is relative to the client area
of that w ndow, otherwi se the result is relative to the screen

Functi on MouseX(Optional ByVal hwnd As Long) As Long
D m | pPoi nt As PO NTAPI

Get Cur sor Pos | pPoi nt
I f hwnd Then ScreenTod ient hwnd, | pPoint
MouseX = | pPoi nt. x

End Function

' Get nouse Y coordinates in pixels

" If a window handle is passed, the result is relative to the client area
of that window, otherwise the result is relative to the screen

Functi on MouseY(Optional ByVal hwnd As Long) As Long
D m | pPoi nt As PO NTAPI
Get Cur sor Pos | pPoi nt
If hwnd Then ScreenTod i ent hwnd, | pPoint
MouseY = | pPoint.y
End Function

Private Sub Form Load()

DmIR As Long

| R = Set TopMost W ndow(XY. hwnd, True)

Label 1. Caption = "(" & MouseX & ", " & MouseY & ")"
End Sub

Function Pixel _Color() As String
"Cal cul ate the pixel color of the current nouse position
Dim 1 Color As Long
DmsTnp As String

| Col or = GetPixel (Get WndowDC(0), MuseX, MbuseY)

sTnp = R ght $("000000" & Hex(|Color), 6)

Pixel _Color = "RGB:" & Right$(sTnp, 2) & "" & Md$(sTnp, 3, 2) & "" & Left$(sTnp, 2)
End Function

Private Sub Tinmerl_Timer()

"Display current nouse position/col or

Label 1. Caption = "(" & MouseX & ", " & MuseY & ") " & Pixel _Col or()
End Sub

