
XAWK Language Reference Manual

John Cieslewicz Gabriela Cretu Shi Tak Man
johnc@cs.columbia.edu gcretu@cs.columbia.edu sm2173@columbia.edu

Prashant Puri
pp2119@columbia.edu

October 21, 2004

XAWK Language Reference Manual

1 Lexical Conventions

This section covers the XAWK lexical conventions including
comments, identifiers, types of variables and constants, and
operators.

1.1 Comments

A single-line comment starts with the character ‘#’ and terminates
with newline characters ‘\r’ or ‘\n’. The ‘#’ character does not
indicate a comment when it appears within a string literal.

1.2 Identifiers

An identifier, such as a name or a label, starts with a letter
followed by letters, digits, or an underscore character ‘_’.
Identifiers are case-sensitive. For example, John5 is not the same
as john5.

1.3 Keywords

The identifiers listed below are reserved as keywords:

break continue if else text
do while for in doc
print printf true false

1.4 System Variables

There are also built-in system variables besides the keywords.
Each of these variables associates with a particular meaning in
XAWK:

ARGC number of command-line arguments
ARGV associative array of command-line arguments
PATH fully-qualified path to current object
CA associative array of attributes on current element
CE name of current element
CV value of current object

(e.g. text, attribute value, or element name)

1.5 Numbers

The two types of numbers in XAWK are double constants and
integers. Each type is determined by its form and value.

XAWK Language Reference Manual

1.5.1 Integers

An integer consists of a sequence of digits.

1.5.2 Double Constants

A double constant, or DoubleConst, consists of an integer followed
by two kinds of situations:
• A decimal point ‘.’ followed by an optional exponent and a

signed integer
• An exponent followed by a signed integer

1.6 Characters

A character is enclosed in single quotation marks, including the
blank character ‘ ‘ and newline character ‘\n’. In fact, the new line
character belongs to the following set of special characters, which
are represented by the escape sequences:

\n newline
\r carriage return
\t horizontal tab
\b backspace
\f form feed
\\ backslash
\’ single quote
\” double quote

1.6.1 Unicode escape sequence

In addition to the regular escape sequences, XAWK also recognizes
all of the Unicode escape sequences. The following list shows
some examples of Unicode escape sequences in the form of
\uxxxx:

\u000A newline
\u000D carriage return
\u0009 horizontal tab
\u0008 backspace
\u000C form feed
\u005C backslash
\u0027 single quote
\u0022 double quote
\bbb octal character, where b is between 0 and 7 inclusive and

\bbb does not exceed \377

XAWK Language Reference Manual

1.7 String Literals

A string literal is a sequence of characters enclosed in double
quotation marks. Identifiers are disregarded when placing within
string literals while escape sequences are still effective.

XAWK Language Reference Manual

2 Expressions

This section describes the forms of XAWK expressions and pattern
expressions.

2.1 Forms

An expression can be represented by any one of the following
forms:

identifier variable reference
identifier [expression] associative array reference
@expression field reference
string literal
number

2.2 Operators

An operator signifies an operation and can be one of the following:
(displayed in the order of decreasing precedence)

++ -- increment / decrement
(both pre-and postfix)

+ - ! unary plus / minus / logical NOT
* / % multiplication / division / modulus
+ - addition / subtraction
< <= > >= != == relational operators

string concatenation
in array membership
&& logical AND
| | logical OR
?: conditional (ternary)
= += -= *= /= %= assignment

Left-To-Right associativity is maintained in all of the defined in
operations in XAWK.

XAWK Language Reference Manual

2.3 Pattern Expressions

XAWK is a pattern-matching program. Pattern matching commands
are executed once for each line in the data file. The order in which
patterns are executed varies depending on the object being
referenced. For elements and text blocks, actions are executed in
the order in which these objects appear in the XML file or tree.
Because the order in which attributes appear in XML files is
irrelevant, patterns that refer to attributes are executed in the order
in which they appear in the source file.

2.3.1 XPath syntax

A subset of XPath syntax is displayed below:

doc(expression) matches a file or tree
identifier matches a child element with the given

name
* matches any child element

(not attributes or text)
text() matches text children
@name matches a given attribute
@* matches all attributes
/ path1 / path2 matches children of path1 that match path2
/ path1 // path2 matches any nodes below path1 that match

path2

The XML specification requires that tag names start with an upper-
or lowercase letter followed by letters and numbers as well as the
period, dash, and underscore characters. A colon is also common in
XML tag names so XAWK allows that character as well. The
colon, period, and dash are not allowed in standard identifiers, so
tag names including these characters must be enclosed in single
quotes. For example:

/’path’/path
/path//’path’/

The following will be correctly recognized as valid paths:
/ class / student
/’stu-dent’ / grade_6
/
/ @*
/ student // grade
The expression of the doc directive will be considered as a file path
name when expressed as a string.

XAWK Language Reference Manual

3 Statements

This section describes the forms of XAWK statements

3.1 Forms

A statement can be represented by any one of the following forms:

break [label] ;
continue [label] ;
do statement while (expression) ;
expression ;
if (expression) statement [else statement] ;
for (expression ; expression ; expression) statement ;
for (expression) statement;
I/O statement ;
for (variable in array) statement ;
while (expression) statement ;
pattern { statements }
{ statements }
;

Any statement may be preceded by a label:

label :

3.1 Examples

Forms of statements are given below:

3.1.1 Assignment statements

identifier (index) = expression
identifier (index) += expression
identifier (index) -= expression
identifier (index) *= expression
identifier (index) /= expression

The (index) part is optional in the assignment statements.

3.1.2 Label statements

identifier : statement

XAWK Language Reference Manual

3.1.3 Iterative statements

Iterative statements are simply loops. There are two kinds of loops
in XAWK, for loops and while loops.

do statement ---

do statement while (expression)

while statement ---

while (expression) statement

for statements ---

 for (for-condition) statement

for-condition is defined as follows:

expression ; expression ; expression

for (expression) statement

expression has to be an expression of the form:
variable in array

break statement ---

break (identifier)

continue statement ---

continue (identifier)

3.1.4 Conditional statements

if (expression)
statement

else
statement

The else block is optional in the conditional statements.

XAWK Language Reference Manual

3.1.5 I/O statements

print (io)

or

printf (identifier io)
printf (stringliteral io)
printf ((expression) io)

where io is defined as follows:

stringliteral stringliteral
identifier + identifier
identifier (index) identifier (index)

where the + { stringliteral / identifier / identifier (index) }
is optional.

3.1.6 Pattern statements

pattern statement

where pattern is in one of the forms defined in pattern expressions
in section 2.3.

