
Contents

1 Lexical Conventions 2
1.1 White Space . 2
1.2 Comments . 2
1.3 Identifiers . 2
1.4 Keywords . 2
1.5 Punctuation . 2
1.6 Operators . 2

2 Types 3
2.1 Integers . 3
2.2 Floating Point Numbers . 3
2.3 Strings . 3

3 Syntax Notation 3

4 Objects 3
4.1 WebPage . 3

4.1.1 Add . 4
4.1.2 Print . 4

4.2 Paragraph . 4
4.2.1 Add . 4

4.3 Link . 4
4.3.1 setText . 4
4.3.2 setImage . 4
4.3.3 setURL . 5

4.4 Image . 5
4.4.1 Set . 5

4.5 Table . 5
4.5.1 Set . 5
4.5.2 Add . 5

5 Declarations 5

6 Functions 6

7 Expressions 6
7.1 (expression) . 6

8 Statements 6
8.1 Statement Blocks . 6
8.2 Assignments . 6
8.3 Conditional Statements . 7
8.4 Iterated Statements . 7

9 Simple Example 7

1

1 Lexical Conventions

1.1 White Space

Aside from its function as token separator, white space has no affect on the output or execution of
the WCL compiler. White space consists of a combination of any of the following characters:

"\n" newline
"\r" carriage return
"\t" tab
" " space

1.2 Comments

WCL comment blocks can be bookended by a beginning “/∗” and a final “∗/”. Alternatively,
anything following “//” on a line is considered as a comment.

1.3 Identifiers

Identifier consist of a letter followed by a sequence of letter, digits and underscores. Upper and
lower case letters are considered as different characters.

1.4 Keywords

WCL reserves the following identifiers as keywords, and cannot not be used otherwise:

else float function if int
new return string while void
Image Link Paragraph Table WebPage

1.5 Punctuation

WCL strictly adheres to the following punctuation conventions:

() surround comparisons
{ } surround statement blocks
[] index of arrays
; end of statement
. object reference
, list elements seperator

1.6 Operators

WCL uses various operators for mathematics and logical operations. The following operators are
supported:

+ - * /
< > ==
& | %

2

2 Types

WCL supports three basic data types: integers, floating point numbers and strings. A data type
for single characters is not available, but can instead implemented by a string containing a single
character.

2.1 Integers

Integers consist of one or more digits and are optionally signed. They are stored as a 32-bit block
and can range in value from -2147483648 to 2147483647.

2.2 Floating Point Numbers

Floating point numbers consist of an integer part, a decimal point, an ’e’ and an optionally signed
integer exponent. The integer and fraction parts both consist of a sequence of digits. Either the
integer part or the fraction part (but not both) may be omitted; either the decimal point or the e
and the exponent (but not both) may be omitted. Like integers, floating point numbers are stored
as 32-bit blocks. They can range in value from 1.4E-45 to 3.4028235E+38 with both positive or
negative signings. They can also take on the positive of negative values of infinity.

2.3 Strings

A string is a sequence of characters, and is declared within a set of double quotes. Within a quote,
a double quote is represented by a slash followed by double quotes.

3 Syntax Notation

In the syntax notation used in this manual, syntactic categories are indicate by italics, while literal
words and characters are in typewriter type. Optional parts are indicated with a subscript “opt”.
For example,

expressionopt

represents an optional expression.

4 Objects

There exist five basic object types in WCL, each with its own set of methods.

4.1 WebPage

WebPage web-page-name = new WebPage;
The WebPage object is the object used to contain the contents of an entire webpage. There can be
numerous instances of this object within a WCL file and each can be output (printed) to a separate
file.

The WebPage object contains the following methods:

3

4.1.1 Add

WebPage.Add(object);
The WepPage.Add method takes as its input a single object (of types: Image, Link, Paragraph
or Table) and inserts it into the webpage after the object most recently inserted there. Only a
reference to (and not a copy of) the object is inserted and if the object is changed before the Print
method is called, the updated object will be output to the html page.

4.1.2 Print

WebPage.Print(filename);
The WebPage.Print method creates a webpage file from the WebPage object. The webpage is
stored as filename.html in the present working directory.

4.2 Paragraph

Paragraph paragraph-name = new Paragraph;

The Paragraph object contains the following methods:

4.2.1 Add

Paragraph.Add(text);
The Paragraph.Add method appends the argument string to the existing paragraph.

4.3 Link

Link Link-name = new Link((text|image), url);
The Link constructor takes two arguments, text or image and url and sets them as the values for
the Link value and url variables. When the WebPage.Print method is used, the value variable
becomes the text or image that when clicked on, directs the user to the location specified by the
url variable. Optionally, the Link object can be declared with the following statement that leaves
the variables value and url uninitialized:

Link Link-name ;

4.3.1 setText

Link.setText(text);
The Link.setText method sets text as the text of the link as it will be displayed on the webpage.
This method can be called numerous times, as the link text is variable.

4.3.2 setImage

Link.setImage(location);
The Link.setText method sets location as the location of the image of the link to be displayed
on the webpage. This method can be called numerous times, as the link image is variable.

4

4.3.3 setURL

Link.setURL(url);
The Link.setURL method sets the URL variable as the address of the document to link to. This
method can be called numerous times, as URL is variable.

4.4 Image

Image image-name = new Image(location);
The Image constructor takes a string, location, and sets it as the image-source variable that spec-
ifies the location of the image. Optionally, the Image object can be declared with the following
statement that leaves the value of the image-source variable uninitialized:

Image image-name ;

4.4.1 Set

Image.set(location);
The Image.set sets the image-source variable of the object to location. The image-source variable
is the address of the image to be displayed.

4.5 Table

Table Table-name = new Table;
A Table object is constructed empty. It contains the following method:

4.5.1 Set

Table.Set(tableArray);
The Table.Set method sets the tableArray array as the contents of the table.

4.5.2 Add

Table.Add(rowArray);
The Table.Add method adds the rowArray array to the contents of the table, after the already-
existing rows.

5 Declarations

All variables must be declared before being referenced. They take on the following format:

declaration-type identifier (= assignment)opt;

The declaration type and identifier are both required, whereas the assignment of a value to the
identifier is optional. Every identifier must have a unique corresponding declaration type.

Aside from an identifier’s type, it also has a lexical scope in which it can be referenced. That
scope begins from the point it is declared and terminates at the end of the section it is nested in.
For example, the lexical scope of variables declared within a function will begin every time the
function is called and terminate at the end of that function call. At the end of an identifier’s scope,
the content of the variable becomes discarded and the identifier may be used once again.

5

To prevent ambiguity in overlapping scopes, variables may not be declared within an inner
scope that have the same identifier as a variable in an outer scope.

6 Functions

Functions can be declared in the following manner:

function return-type function-name (parametersopt) {declaration-listopt, statement-list}

A function declaration consists of a function identifier, followed by a list of arguments enclosed by
“(” and “)”. The list of arguments contains zero or more arguments separated by “,”. Follows is a
list of declarations and statements enclosed by “{” and “}”. The function must return a value of
the return type or nothing if the value is void.

7 Expressions

Expressions are the values that are assigned to variables or input into function calls. Some simple
expressions include identifiers, constants and function return values. The type of the expression
is the type of the identifier, constant or function return value. More complex expressions are are
composed of multiple expressions, yet have a single value when evaluated. These expressions have
the value of the combination of the contained expressions. The types of the simple expressions
contained and the operands separating them dictates how the expressions are combined. For
example, string expressions can be concatenated whereas arithmetic expressions can be evaluated
by addition, subtraction, etc., depending on the operands used.

7.1 (expression)

An expression can be enclosed in parenthesis, where its value is the value of the contained expression.
Parenthesis can be added to clarify precedence or to make code more readable.

8 Statements

Statements are the basic structure of the WCL file and can be grouped individually or in statement
blocks. Every statements is executed sequentially, progressively adding to and expanding a webpage
or its contents. Each statement must end with a “;”.

8.1 Statement Blocks

A statement block is a series of one or more statements that is enclosed by “{” and “}”. Within a
statement block, each statement is executed in order.

8.2 Assignments

In an assignment statement, variables can be assigned values of their type as follows:

variable-name = right-value

The right-value must be an expression as defined below.

6

8.3 Conditional Statements

Conditional statements are of the form:

if(condition) statement; (else statement)opt

In this case, the statement is executed only if the condition is evaluated to be true. The else section
is optional and its statement section is executed when the condition is evaluated to be false.

8.4 Iterated Statements

A while loop is an iterated conditional statement where the statement is executed so long as the
condition remains true. It takes the form:

while(condition) statement;

Since the condition is checked before the execution of each round, it is possible that the statement
will never get executed.

9 Simple Example

The following example creates a simple webpage that contains a single table. The table is first
created and filled in, and is then inserted into the webpage object. Finally, the webpage is saved
as the file “index.html”.

WebPage index = new WebPage();

// Create a table
Table myTable = new Table();

// Declare some variables
int i = 0;
int j = 0;
int num = 0;
int size = 10;
int tmpArray[size];

// Fill the table with values
while (i < 5)
{

// Initialize array with values
j = 0;

while (j < size)
{

if (j % 2 == 1)
{

num = j * i;

7

}
else
{

num = j * i * 2;
}

tmpArray[j] = num;
j = j + 1;

}

// Add the array to the table
myTable.Add(tmpArray);
i = i + 1;

}

WebPage.Add(myTable);
WebPage.Print("index.html");

8

