An ANTLR Grammar for Esterel
COMS W4115

Prof. Stephen A. Edwards
Fall 2004
Columbia University
Department of Computer Science

ANTLR Parser Specifications

Look like

class MyParser extends Parser;
options {
option = val ue

}

rul el : Tokenl Token2
| Token3 rule2 ;
rule2 :

rul e3

(Tokenl Token2)* ;
rulel ;

Looks at the next k tokens when deciding which option to

consider next.

The Esterel LRM

» Keywords are reserved and cannot be used as
identifiers. Many constructs are bracketed, like
“present ... end present”. For such
constructs, repeating the initial keyword is optional;
one can also write “present ... end".

* Simple comments start with % and end at end-of-line.
Multiple-line comments start with %{ and end with }% .

ANTLR

EsterelParser.java

Est | public class
sterel.g Esterel Parser extends

antlr. LLkParser
extends Parser; i npl enent s

cl ass Esterel Parser

. Est er el Par ser TokenTypes
file : expr EOF!;
— | {3

class Esterel Lexer

EsterelLexer.java
extends Lexer;

public class Esterel Lexer
ID: LETTER (LETTER extends antlr. Char Scanner
| DAT)* ; inpl enent s

Est er el Par ser TokenTypes,
TokenStream {}

An ANTLR grammar for Esterel

Esterel: Language out of France. Programs look like

module ABRO:
input A, B, R;
output O;

loop
[await A || await B];
emit O

each R

end module

A Lexer for Esterel

Operators from the langauge reference manual:

SHEF -/l <>, =50 =()
[17? 7?7? <=>= <> =>

Main observation: none longer than two characters. Need

k = 2 to disambiguate, e.g., ? and ??.

class EsterellLexer extends Lexer;
options {

k = 2;
3

ANTLR Lexer Specifications

Look like
class M/Lexer extends Lexer;
options {

option = val ue
¥
Tokenl : 'char’ ’'char’ ;
Token2 : ’'char’ 'char’ ;
Token3 : ’'char’ ('char’)? ;

Tries to match all non-protected tokens at once.

The Esterel LRM

Lexical aspects are classical:

* Identifiers are sequences of letters, digits, and the
underline character , starting with a letter.

* Integers are as in any language, e.g., 123, and
floating-point numerical constants are as in C++ and
Java; the values 12.3, .123E2, and 1.23E1 are
constants of type double, while 12_3F, .123E2F, and
1.23E1fT are constants of type float.

* Strings are written between double quotes, e.g.,
"a string", with doubled double quotes as in
"a double quote™.

A Lexer for Esterel

Next, | wrote a rule for each punctuation character:

PERIOD : t7
POUND : # s
PLUS : T+
DASH : ot
SLASH : A
STAR : et
PARALLEL : RN

A Lexer for Esterel

Identifiers are standard:
1D

. 27] CAT..7ZY)
Sz) ALt) T 07 .L79)>

A Lexer for Esterel

Another problem: ANTLR scanners check each
recognized token’s text against keywords by default.
A string such as "abort" would scan as a keyword!
options {

k = 2;

charVocabulary = *\3”..°\377”;

exportVocab = Esterel;

testLiterals = false;

}

ID options { testLiterals = true; }
CCar..tz | ALY Ix Lo

Number Rules

Number
: (COTLLT97)+
(7.7 (C07..797)* (Exponent)?
C CFI’F) { $setType(FloatConst); }

| 7* empty */ { $setType(DoubleConst); }

)
| 7* empty */ { $setType(lnteger); }

)

A Lexer for Esterel

String constants must be contained on a single line and
may contain double quotes, e.g.,

"This is a constant with ""double quotes

ANTLR makes this easy: annotating characters with !
discards them from the token text:

StringConstant
MR |
C~C™)
| ¢)
)*

Numbers Defined

From the LRM:

Integers are as in any language, e.g., 123, and
floating-point numerical constants are as in C++ and Java;
the values 12.3, .123E2, and 1.23E1 are constants of
type double, while 12.3F, .123E2f, and 1.23E1f are
constants of type float.

Number Rules Continued

FractionalNumber
.7 (C07..797)+ (Exponent)?
C CFI’F) { $setType(FloatConst); }

| /7* empty */ { $setType(DoubleConst);

)

protected
Exponent
2 (Ce’|7ET) (C+7]7=7)? (C07..797)+

}

A Lexer for Esterel

| got in trouble with the ™ operator, which inverts a
character class. Invert with respect to what?

Needed to change options:

options {
k = 2;
charVocabulary = *\3”..°\377”;
exportVocab = Esterel;

}

Numbers

With k = 2, for each rule ANTLR generates a set of
characters that can appear first and a set that can appear
second. But it doesn’t consider the possible combinations.

| split numbers into Number and FractionalNumber to
avoid this problem: If the two rules were combined, the
lookahead set for Number would include a period (e.g.,
from “.1") followed by end-of-token e.g., from “1” by itself).

Example numbers: First Second
.13 . EOT
.2 1 .

13 2 1
Comments

From the LRM:

Simple comments start with % and end at end-of-line.
Multiple-line comments start with %{ and end with }%.

Comments

Conment
S op
)y ="{

(/] Prevent .* fromeating the whole file

options {greedy=false;}:

\r? { newine();

C\r” "\n’) =>"\r” "\n { newine();
|

| "\'n { newine();
| ,

| (("'An"))* "An" { newline(); }

{ $set Type(Token.SKIP); }

Grammar from the LRM

But in fact, the compiler accepts

module TestSemicolonl:
nothing;

end module

module TestSemicolon2:
nothing; nothing;

end module

module TestSemicolon3:
nothing; nothing

end module

Rule seems to be “one or more statements separated by
semicolons except for the last, which is optional.”

Nondeterminism

sequence : atomicStatement seql seq2 ;
seql : SEMICOLON atomicStatement seql
| /7* nothing */ ;
seq2 : SEMICOLON
| /7* nothing */ ;
How does it choose an alternative in seql?
First choice: next token is a semicolon.
Second choice: next token is one that may follow seq1l.

But this may also be a semicolon!

}
}
}

A Parser for Esterel

Esterel’s syntax started out using ; as a separator and
later allowed it to be a terminator.

The language reference manual doesn’t agree with what
the compiler accepts.

Grammar for Statement Sequences

Obvious solution:

sequence
: atomicStatement
(SEMICOLON atomicStatement)*
(SEMICOLON)?
warning: nondeterminism upon
==1:SEMICOLON
between alt 1 and exit branch of block

Which option do you take when there’s a semicolon?

Nondeterminsm

Solution: tell ANTLR to be greedy and prefer the iteration
solution.

sequence
: atomicStatement
(options { greedy=true; }
: SEMICOLON! atomicStatement)*
(SEMICOLON1)?

Grammar from the LRM

NonParallel:
AtomicStatement
Sequence

Sequence:
SequenceWithoutTerminator Sopt

SequenceWithoutTerminator:
AtomicStatement ; AtomicStatement
SequenceWithoutTerminator ; AtomicStatement

AtomicStatement:
nothing
pause

Nondeterminism

sequence : atomicStatement
(SEMICOLON atomicStatement)*
(SEMICOLON)? ;

Is equivalent to

sequence : atomicStatement seql seqg2 ;

seql : SEMICOLON atomicStatement seql
| /7* nothing */ ;

seqd2 : SEMICOLON
| /* nothing */ ;

Nondeterminism

Delays can be “A” “X A” “immediate A” or “[A and B]”

delay : expr bSigExpr
| bSigExpr
| “immediate" bSigExpr ;

bSigExpr : ID
| "[" signalExpression "]" ;

expr - ID | /* ... */ ;

Which choice when next token is an ID?

Nondeterminism

delay : expr bSigExpr
| bSigExpr
| "immediate" bSIigEXpr ;

What do we really want here?
If the delay is of the form “expr bSigExpr,” parse it that way.

Otherwise try the others.

Turning Off Greedy Rules

The right way is to disable greedy:

COMMENT
oy
(options {greedy=false;} :.)*
k-

This only works if you have two characters of lookahead:

class L extends Lexer;
options {

k=2;
3

CMT : "/*" (options {greedy=false;} :.)* "*/"

Removing the Warning
class MyGram extends Parser;

stmt
: "if" expr "then" stmt
(options {greedy=true;} :"else" stmt)?

Nondeterminism

delay : ((expr bSigeExpr) => delayPair

| bSigExpr

| "immediate' bSigEXpr

) s

delayPair : expr bSIigExpr ;

The => operator means “try to parse this first. If it works,

choose this alternative.”

The Dangling Else Problem

class MyGram extends Parser;

stmt : "if" expr "then" stmt (“else" stmt)? ;

Gives

ANTLR Parser Generator Version 2.7.1
gram.g:3: warning: nondeterminism upon
gram.g:3: k==1:"else"

gram.g:3: between alts 1 and 2 of block

A Simpler Language

class MyGram
extends Parser;

stmt
o Ui expr
"then" stmt
(else" stmt)?
Ei

mat ch(LI TERAL_i f);
expr();
mat ch(LI TERAL_t hen) ;
stnt();
switch (LA(1)) {
case LI TERAL_el se
mat ch(LI TERAL_el se)
stnt();
br eak;
case LITERAL_fi
br eak;
defaul t:
throw new SyntaxError (LT(1))
}
mat ch(LI TERAL_fi);

Greedy Rules

The author of ANTLR writes

| have yet to see a case when building a parser
grammar where | did not want a subrule to match
as much input as possible.

However, it is particularly useful in scanners:

COMMENT
osE ()F

This doesn’t work like you'd expect...

Generated Code

stmt : "if" expr "then" stmt (“else" stmt)? ;
match(LITERAL_if);
exprQ;
match(LITERAL_then);
stmt();
if ((LA(Q)==LITERAL_else)) {
match(LITERAL_else); /* Close binding else */
stmt();
} else if ((LA(1)==LITERAL_else)) {
/* go on: else can follow a stmt */
} else {
throw new SyntaxError(LT(1));

}

