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1. Introduction 
 
Image and pattern recognition has been an area of much research and development in recent years. An 
immaculate number of complex software has been written in order to get the best level of pattern 
recognition. The applications of this type of software range from office surveillance systems to 
tracking of objects for virtual reality gaming. The basis for this project was primitive forms of pattern 
recognition in black-and-white. We also developed the required infrastructure for color manipulation, 
namely, YUV to RGB conversion in software and in hardware. 
 
The initial part of this document describes the project as a block diagram, highlighting relevant aspects 
of video image capturing and manipulation. The final sections show in more detail the modules 
implemented, some trade-off decisions we had to make and how the systems works as a whole. This 
project uses a XESS XSB-300E Board (www.xess.com) containing, among other components, (1) a 
Xilinx SpartanIIE FPGA with 300K system gates (2) a Philips SAA7114H video decoder (3) a 256K x 
16 SRAM (4) a Texas Instruments THS8133B video DAC. The FPGA is loaded with a 32-bit 
microprocessor (microblaze) and we have access to a C compiler for such CPU (microblaze-gcc). 
 

2. Project Description 
 
The overall view of the object tracker "OBTRAK" is sketched in the following block diagram. 
 

 
 

Fig. 1 - Obtrack block diagam. 
 
Basically, the system expects an NTSC analog video signal at the RCA-Jack connector J7 on the XSB 
board. The analog signal is digitized by the video decoder and arrives at the FPGA through the IPD 
and HPD buses. IPD and HPD connect to SAA7114H’s I-port and H-port, respectively, and are 
defined in the Xess XSB-300E manual. The IPD bus carries the 8-bit luminance values (Y) and the 
HPD carries the 8-bit chrominance information (UV). The data format at the video decoder output is 
YUV 4:2:2, 16-bit output via I-Port and H-Port (See Figure 5), configured through subaddress 93H 
(value C0H).  A description of some relevant configuration registers is given later in the report.  
 



The following figure shows at a higher level of detail the interconnection among the main components 
shown in Figure 1. It also depicts some relevant modules that were built inside the FPGA such as    
video decoder interface and block RAMs. “Block RAMs” are memory elements that can be found inside the 
SpartanIIE FPGA. They can be used as dual port RAMs with independent clock frequencies, which 
was very suitable for our project. Basically, video decoder interface receives the 8-bit luminance and 8-bit 
chrominance values from the video decoder and generates the address (waddr) for the block RAMs to 
store the luminance bytes. It also propagates IDQ (data valid indicator) and ICLK (video decoder 
output frequency) from the video decoder to the block RAMs. Although the data output from the 
video decoder interface is 16-bits wide (luma and chroma) only the luminance bytes are stored. More 
specifically, the block RAMs module contains four dual-port internal RAMs, and each one stores 
(through port B) a subset of the pixels from a single line of digital video at a time. We have decided to 
skip every other pixel in order to meet time and space constraints. The three least significant bits of 
waddr are used to select to which block RAM to write a given pixel’s luminance. In our design, block 0 
stores Y0, Y8, Y16, Y24,… on its memory cells 0,1,2,3,… block 1 stores Y2, Y10, Y18, Y26,… on its 
addresses 0,1,2,3,…, block 2 stores Y4, Y12, Y20, Y28,… on addresses 0,1,2,3,…, and block 3 stores 
Y6, Y14, Y22, Y30,… on addresses 0,1,2,3,… Here, Yn represents the luminance value of pixel ‘n’.  
 

 
Fig. 2 – FPGA internal modules I2C controller, xsb300 bridge and videodec; SRAM and video decoder also shown. 

 
The opb_i2ccontroller module is used to drive the I2C bus where the video decoder is attached. This 
module is conceptually quite simple – it only allows the microprocessor to write directly to pins 
VID_I2C_SCL and VID_I2C_SDA. Specifically, a sequence of instructions executed by microblaze is 
responsible for toggling SCL and SDA outputs in order to send the serial bits that configure the video 
decoder. The module opb_xsb300 was developed by Cristian Soviani, and contains a memory 
controller, a “vga timing” module and a vga “wrapper” module. In short, the memory controller 
arbitrates the SRAM between the microprocessor and the vga module; the vga module constantly 
reads the SRAM starting at address 00800000H through 0084B000H, treating each byte as the 



luminance information for a single pixel, and sends RGB signals to the video DAC. The same 
luminance byte is sent to the 8 upper bits of VIDOUT_RCR, VIDOUT_GY and VIDOUT_RCB, 
essentially creating a black-and-white image on the screen. This feature was a modification we had to 
insert on this module. The 2 lower bits of VIDOUT_RCR, VIDOUT_GY and VIDOUT_RCB  are 
tied to ‘0’. Figure 3 below shows all the inputs and outputs of opb_xsb300. 
 

 
Fig. 3 – opb_xsb300 module block diagram. 

 
BLOCK RAMs 
 
Figure 4 shows in yet greater detail the block RAMs module. As depicted, this module is formed by 
four block RAMs instantiated as RAMB4_S8_S8, summing up to 512 bytes x 4, or 2048 bytes (See 
block_ram.vhd). As mentioned, these internal dual port memories can operate with independent clock 
frequencies at each port. In this project, the “B” ports are written to by the video decoder interface at 
iclk, and the “A” ports are read from the microprocessor at OPB_Clk.  
 

 
Fig. 4 – Block RAMs module. 

 
The timing diagram on Figure 5 shows the waveforms at the input and output of the video decoder 



interface that are relevant for the block RAMs module. It also shows internal signals such as pix_count 
and active – the former counts the valid bytes being sent by the video decoder, the latter goes to ‘1’ right 
after the timing reference code “FF 00 00 SAV” has been transmitted. Notice that waddr increments 
only when idq_in =’1’ and active=’1’. The rationale here is that we don’t want to store those bytes that 
correspond to timing reference code. 
 

 
Fig.5 – Timing diagram for the video decoder interface – writing to the block RAMs. 

 
The 16-bit output signal called data in Figure 2 is simply the concatenation of IPD and HPD, and the 
output signals iclk_out and idq_out are directly connected to idq_in and iclk_in. 
 
As previously said, the block RAMs are written to by the video decoder interface and read from by 
microblaze, both operating at different clock frequencies (iclk and OPB_Clk, respectively). Clearly 
there is a need for some sort of synchronization between writes to and reads from the block RAMs – 
even more because this module only stores one line of digital video at a time (note that waddr is reset to 
‘0’ at the end of every line). In other words, each line of video has to be transferred to the SRAM 
before the next line is stored. The way we do this synchronization is through the fil_level output shown 
in Figure 2. Basically, this is a four-bit signal on which each bit corresponds to a “flag” indicating that 
a given section of the current line has been already written to the block RAMs. The existing levels are 
¼, ½, ¾ and entire line, from least to most significant bits respectively. The timing diagram below 
sketches how fil_level evolves: 
 

 
Fig.6 – fil_level timing diagram. 

 
Note from Figure 2 that fil_level connects to the OPB data bus through data_bus_ce multiplexor. This 



means it can be read by microblaze through an “XIo_In” instruction. We have specified address 
0x01803FFC (allowed addresses must have “8” as the 3rd nibble) to do that, thus we can execute 
XIo_In32(0x01803FFC) and check for a specific level by masking out the other 3 bits. More 
precisely, the microprocessor can enter into a busy-wait state until, say, ¼ of the current line has been 
written to the block RAMs. When that “milestone” is detected through polling, microblaze executes a 
sequence of reads and writes in order to transfer the first quarter of the line from the block RAMs to 
the SRAM. Then, it undergoes again to a busy-wait state until ½ of the line is reached, transferring the 
second quarter, and so on until the entire line has been transferred to the SRAM. At this point (entire 
line), we essentially have synchronized at the “line” level (HSYNC). The following piece of code was 
extracted from main.c and shows the sequence of busy-wait/transfers mentioned here: 
 

current_level = 0x01; 
for (line_section = 0; line_section < 4; line_section++) 
{ 
   while (! (XIo_In32(0x01803FFC) & current_level) ) ;   /* Busy-wait */ 

 
   if (current_level == 0x01) { 
     start = 0; 
     end   = 160; 
   } 
   else if (current_level == 0x02) { 
     start = 160; 
     end   = 320; 
   } 
   else if (current_level == 0x04) { 
     start = 320; 
     end   = 480; 
   } 
   else if (current_level == 0x08) { 
     start = 480; 
     end   = 640; 
   } 

             
   write_video(start, end, line);  /* Transfer the current fourth */ 

             /* of the  line  to  the  SRAM */ 
   current_level = current_level << 1; 
} 

 

In the above code, write_video is a function that transfers one-fourth of the current line each time it 
is called, starting at pixel “start” and ending at pixel “end”. One point here is that “start” and “end” 
values identify the actual pixels, apparently not taking into account that we are skipping every other 
pixel. Nevertheless, write_video does take this into account. One final point relates to how we 
synchronize at the “frame” level (VSYNC). This is done by reading IGPV through data_bus_ce as well 
(See Figure 2). We have specified XIo_In32(0x01802FFC) to do that. 
 
READING FROM BLOCK RAMs 
 
A value can be read from the block RAMs (or written to, for this matter) in one clock cycle. However, 
this does not mean that each read operation will take only one cycle. In fact, the following timing 
diagram shows a complete read operation, which actually takes 3 cycles. We use as an example the 
instruction XIo_In32(0x018001FC) – the block RAMs are mapped to addresses 0x0180000 to 
0x01800200, so this instruction reads four bytes from “somewhere” in the block RAMs. Specifically, 
byte 0 comes from block 0, byte 1 comes from block 1, byte 2 comes from block 2 and byte 3 comes 
from block 3. For alignment reasons, we use OPB_ABus(10 downto 2) as the actual read address. 
Therefore, raddr points to memory cell 7F on all blocks. Note that each individual address reads 32 bits, 
or 4 bytes. Thus, the block RAMs module can be viewed as a black-box memory with an address space 
of 512 words of 32 bits each (9 bits for raddr therefore). 



 
Fig.7 – Read operation timing diagram. 

 
In the above figure, data_bus_ce is a 32-bit signal that is connected to the OPB bus data read port 
(Sln_Dbus in the general case, VIDEC_DBus in our case) through a multiplexor that has            
“fil_level & frame_id & line_count & igpv” as the second input (“&” here means concatenation). xfer is the 
transfer acknowledge signal that our module has to send back to the microprocessor indicating the 
completion of transfer. Only when this signal toggles to ‘1’ does microblaze “grabs” whatever value is 
in the data bus. The xfer signal, as well as the ce signal in the above figure are generated by the following 
state machine: 

 
Fig.8 – State machine for read operation. 

 
Basically, chip select (cs) goes to ‘1’ whenever microblaze is accessing an address within the range 
0x01800000 to 0x01803FFF. This corresponds to the block RAMs data space (up to 0x01800200) plus 
some extra room for future enhancements. The next rise of the clock will sense cs at ‘1’, and the first 
transition of the state machine latches the correct read address at raddr. One cycle later the block 
RAMs make the data available at the A ports, and the chip enable (ce) signal goes to ‘1’. The third 
transition latches the data at data_bus_ce and sends the transfer acknowledge signal xfer to microblaze. 
The VHDL code for the chip select and the state machine, coded as “one-hot”, follows: 
 

cs <= OPB_select when OPB_ABus(31 downto 14) = "000000011000000000" else '0'; 
process (OPB_Clk) 
begin 
  if OPB_Clk'event and OPB_Clk='1' then 
    q2 <= (not q2 and q1) or (q2 and not q1); 
    q1 <= (cs and not q2 and not q1) or (q2 and not q1); 
    q0 <= q2 and not q1; 
  end if; 
end process; 
ce <= q2 and not q1 and rnw; 
xfer <= q0; 



YUV to RGB COLOR CONVERSION IN SOFTWARE 
 
An alternative module was created in order to display color video instead of black-and-white, YUV to 
RGB conversion being done by software. In order to do that, both the hardware and software parts 
had to be modified. In the hardware side, not only luminance but also chrominance bytes have to be 
stored. To do so, diB inputs of blocks 0 and 2 are connected to the 8 upper bits of data signal (See 
Figure 2), whereas blocks 1 and 3 are connected to the 8 lower bits of data. The data organization 
changes slightly: block 0 now stores Y0, Y4, Y8, Y12,…, block 1 stores CB0, CB4, CB8, CB12,…, 
block 2 stores Y1, Y5, Y9, Y13,…, and block 3 stores CR1, CR5, CR9, CR13,… Since CB and CR 
bytes are sent on consecutive clock cycles, the strategy for skipping pixels also changes – we have to 
store two pixels and skip two.  Therefore, the “and” gates at the enB inputs have a different input set in 
order to enable two blocks together each time we want to do a write. Blocks 0 and 1 have /waddr(1) 
and /waddr(0). Blocks 2 and 3 have /waddr(1) and waddr(0).  Finally, all addrB inputs on the “B” ports 
are connected to waddr(10 downto 2). Almost nothing else needed to be modified in the hardware part. 
On the software side, we have to be aware that each time microblazes executes an XIo_In32 
instruction it now reads 2 pixels worth of information, organized as Yi-CB-Yi+1-CR. Therefore, we 
have to execute twice the number of reads we did before for black-and-white, which stores luminance 
bytes only. Fortunately, there is enough room in the block RAMs to store one line of color digital 
video. The following code was extracted from conversion.c, and contains the necessary functions for the 
color space conversion. 
 

#include "xbasic_types.h" 
#include "xio.h" 

 
#define W 320 
#define H 240 
#define VGA_START 0x00800000 

 
#define YUV2RGB(y, u, v, r, g, b)\ 
  r = y + ((v * 1434) / 2048);\ 
  g = y - ((u * 406) / 2048) - ((v * 595) / 2048);\ 
  b = y + ((u * 2078) / 2048);\ 
  r = r < 0 ? 0 : r;\ 
  g = g < 0 ? 0 : g;\ 
  b = b < 0 ? 0 : b;\ 
  r = r > 255 ? 255 : r;\ 
  g = g > 255 ? 255 : g;\ 
  b = b > 255 ? 255 : b 

  
  

void convert_to_color() 
{ 
  int i, r, g, b; 
  int y0_u_y1_v; 
  int rgb_2_pixs; 
  int y0, y1, u, v; 
  int rgb_pixel_y0, rgb_pixel_y1; 

  
  for (i = 0; i < W*2*H; i+=4) 
  { 
    // Read Y0-Cb-Y1-Cr from the SRAM 
    y0_u_y1_v = XIo_In32(VGA_START + i); 

  
    // Separate Y0-Cb in two variables 
    y0 = (y0_u_y1_v >> 24) & 0xFF; 
    u  = (y0_u_y1_v >> 16) & 0xFF;  
    u  = u - 128; 

  
    // Separate Y1-Cr in two variables 
    y1 = (y0_u_y1_v >> 8) & 0xFF; 
    v  = y0_u_y1_v & 0xFF; 



    v  = v - 128; 
  
  

    // Convert Y0-Cb-Cr to RGB 
    YUV2RGB (y0, u, v, r, g, b); 

         
    // Get the 5 most significant bits of 8-bit red 
    r = r & 0xF8; 

      
    // Get the 6 most significant bits of 8-bit green 
    g = g & 0xFC; 

      
    // Get the 5 most significant bits of 8-bit blue 
    b = b & 0xF8; 

      
    // Shift green and blue to form an 16-bit rgb 
    r = r << 8; 
    g = g << 3; 
    b = b >> 3; 

      
    // Pack the just generated 5-6-5 into 16-bits 
    rgb_pixel_y0 = r | g | b; 
 
    // Convert Y1-Cb-Cr to RGB 
    YUV2RGB (y1, u, v, r, g, b); 

          
    // Get the 5 most significant bits of 8-bit red 
    r = r & 0xF8; 

     
    // Get the 6 most significant bits of 8-bit green 
    g = g & 0xFC; 

      
    // Get the 5 most significant bits of 8-bit blue 
    b = b & 0xF8; 

      
    // Shift green and blue to form an 16-bit rgb 
    r = r << 8; 
    g = g << 3; 
    b = b >> 3; 

      
    // Pack the just generated 5:6:5 into 16 bits 
    rgb_pixel_y1 = r | g | b; 

      
    rgb_pixel_y0 = rgb_pixel_y0 << 16; 
    rgb_pixel_y0 = rgb_pixel_y0 & 0xFFFF0000; 

  
    rgb_2_pixs = rgb_pixel_y0 | rgb_pixel_y1; 

  
    XIo_Out32(VGA_START + i, rgb_2_pixs); 
  } 
} 

 
Basically, after an entire frame of video has been transferred to the SRAM, the video capture stops and 
the stored frame is converted from YUV to RGB. Since we used RGB 565, exactly the same memory 
space in the SRAM could be used for storing the data before and after conversion. More precisely, 32 
bits of memory can store 2 pixels in YUV format (Yi-CB-Yi+1-CR) or 2 pixels in RGB 565 format                    
(R i G i B i -R i+1G i+1Bi+1). Therefore, we can read 32 bits in YUV, perform the conversion, and store the 
data back as RGB in the exact same address. As expected, though, the conversion of an entire frame is 
too slow to allow real time video streaming.   
 
YUV to RGB COLOR CONVERSION IN HARDWARE 
 
Since the color space conversion is highly timing consuming, we decided to transfer the YUV to RGB 
conversion from software to hardware. In other words, the video decoder interface module receives 
luminance and chrominance information, as before, but it is now enhanced with an internal pipeline 



that does essentially what the YUV2RGB macro performs in software. In this way, we are able to write 
RGB565 directly into the block RAMs, using the same hardware for the block RAMs module that was 
devised in the previous section. As expected, we were able to display real time color video on the 
screen, since the YUV to RGB conversion in hardware allow us to run the system at the same speed as 
if we were in black-and-white mode. The following figure shows the color space conversion pipeline 
that has been implemented in VHDL (See video_decoder_intf.vhd). 
 

 
 

Fig.9 – YUV to RGB color space conversion implemented in the video decoder interface module. 
 
In this mode, we do not “skip” incoming pixels per se. Instead, we average the luminance information 
for every two pixels being sent as Yi-CB-Yi+1-CR and use [(Yi+Yi+1)/2), CB and CR] to convert from 
YUV to RGB. In this sense, we still store only half actual line of digital video in the block RAMs but, 
at the same time, have a smoother representation of the image. The multipliers shown in the above 
figure were created using the core generator software included in the XST tools. Since all 
multiplications involve constants, the multipliers were able to perform the operations in one cycle of 
iclk.  Figure 10 shows the control state machine for the above pipeline. An important point here is that 
each transition in this state machine only happens when iclk ticks from ‘0’ to ‘1’ and idq_in = ‘1’. 
 

 
 

Fig.10 – Control state machine for the YUV to RGB pipeline shown in Figure 9. 



In other words, the state machine only operates on valid data, making eventual transitions only when 
data validator (idq) is high. In essence, control stays put at state ‘0’ while there is no incoming video   
(igph = ‘0’). The next two transitions,  0 to 1 and 1 to 2, are solely responsible for ignoring the first 2 
valid bytes of any given line (the rationale is that we want to skip the timing reference code “FF 00 00 
SAV”). All the interesting things happen at transitions 2 to 3 and 3 to 2. The former is when the video 
decoder sends Yi-CB and the latter is when it sends Yi+1-CR. Right at the second transition the pipeline 
registers R0, R1, R2 and R3 contain Y i+1, CR, Y i, CB, as illustrated on Figure 9 for i = 0, i.e., 
considering the first valid pixel of a given line. At exactly this time, we want to “push” the pipeline 
since we have right set of data on the “fetch” registers. Therefore, when state variables q1 and q0 
shown in Figure 10 are both ‘1’, (and idq is ‘1’) we assert a control register named ‘A’ to ‘1’. The next 
four cycles will propagate this ‘1’ until control register ‘D’ is reached. The following code was extracted 
from video_decoder_intf.vhd : 
 

-- Propagate "push" thru the pipeline 
process (iclk_in) 
begin 
  if iclk_in'event and iclk_in='1' then 
    A <= q1 and q0 and idq_in; 
    B <= A; 
    C <= B; 
    D <= C; 
  end if; 
end process 

 
Register ‘D’ is used as the validator for incrementing waddr and pix_count, setting active signal and it is 
directly connected to idq_out signal. Notice that we cannot connect idq_in directly to idq_out as we did 
before on Figure 5 for two reasons: (1) there is a delay of 5 cycles due to the 5 stages of the pipeline, 
and (2) idq_in is high for two cycles when transmitting two adjacent pixels Yi-CB-Yi+1-CR, however we 
are averaging Yi and Yi+1 and therefore we want idq_out to be high during one cycle only for every two 
valid pixels! 
 
VIDEO DECODER CONFIGURATION REGISTERS 
 
One of the challenges we faced on this project was to configure the video decoder properly and get it 
running. There are quite a few registers that need to be configured, and some subsets of these registers 
are dependent on one another. Fortunately, after some experiments with “default” values plus some 
trial-and-error strategy, we were able to get the right set of values. We list below a subset of 
subaddresses-values pairs that we found crucial for correct operation in terms of synchronism control 
and response speed. A great deal of registers is devoted to tasks such as luminance control, 
chrominance control, hue saturation, etc. that, although relevant, do not interfere directly with the 
desired “30 frames per second image” being displayed. 
 

Subaddress Value used Function 
06H  EBH  Horizontal sync start 
07H  E0H  Horizontal sync stop 
08H  59H  Synchronism control 
90H  00H  Task handling 
91H  08H  Scaler input source and format definition 
92H  10H  Reference signal definition at scaler input 
93H  C0H  I-port output formats and configuration 
94H  10H  Horizontal input offset (XO) 



95H  00H  Horizontal input offset (XO) 
96H  D0H  Horizontal input (source) window length (XS) 
97H  02H  Horizontal input (source) window length (XS) 
98H  0AH  Vertical input offset (YO) 
99H  00H  Vertical input offset (YO) 
9AH  F2H  Vertical input (source) window length (YS) 
9BH  00H  Vertical input (source) window length (YS) 
9CH  D0H  Horizontal output (destination) window length (XD) 
9DH  02H  Horizontal output (destination) window length (XD) 
9EH  F0H  Vertical output (destination) window length (YD) 
9FH  00H  Vertical output (destination) window length (YD) 

 
Registers 9CH and 9DH define 720d as the horizontal output window, and registers 9EH and 9FH 
define 240d as the vertical output window (720 x 240). The complete set of register values and 
addresses used in the project can be found in main.c. 
 
OBJECT TRACKING SOFTWARE 
 
The object tracking module was implemented in software, and can be found in track_object.c. It 
currently does the simple task of finding a white square on a black background. If more than one 
object is placed in the scene, the tracking algorithm will return the largest white square placed in there. 
(specifically, the object to be tracked does not necessarily have to be a square. The tracking software 
actually looks for a white object that eventually circumscribes a white square with minimum side size 
of n pixels, where n is a parameter that can be defined prior to compilation). The driving ideology for 
this algorithm is that of a sliding window. The algorithm looks for maximum consistency with the 
constraints provided in the form of minimum dimensions (X and Y) to be considered a shape (in this 
case a rectangle).  The pseudo-code follows, and a flowchart is found in the last page of the report. 
 
Step 01 

 
Grab image from video processor / camcorder, perform resizing / color 

Step 02 
 
Store the image to memory (into a A x B matrix) 

Step 03 
 
Set counter TOTAL = 0 

Step 04 
 
Set counters X = 1, Y = 1, MATCH_X=0, MATCH_Y=0 

 
Step 05 

 
G = X, H = Y 

Step 06 
 
TOTAL = TOTAL + CAM_IMAGE[G,H] 

Step 07 
 
If G < (X+M),  G = G+1; JUMP to Step 06 

Step 08 
 
If H < (Y+N), H = H+1; Jump to Step 06 

Step 09 
 
If TOTAL = 0 (all locations 0) MATCH_X = X, MATCH_Y = Y; JUMP to Step 12 

Step 10 
 
If X < (A-M) X = X+1; JUMP to Step 05 

Step 11 
 
If Y < (B-N) Y = Y+1; JUMP to Step 05 

Step 12 
 
If MATCH_X !=0 PRINT “MATCH FOUND AT” MATCH_X , MATCH_Y 



CONCLUSIONS 
 
We believe that we have developed a successful project. The goal of tracking an object was achieved 
and a couple of enhancements were produced in terms of color video. The YUV to RGB conversion 
in software and then in hardware were very exciting experiences. Overall, having worked with an entire 
system composed of a microprocessor (microblaze), a C compiler for it (microblaze-gcc), a 
hardware/software interface through the OPB bus and the hardware modules developed for capturing 
digital video was a huge learning experience in terms of computer architecture and embedded systems.  
By designing the same functionality both in software and hardware we were able to truly face the 
trade-offs associated with this type of engineering decisions.  Some of the major challenges faced 
during the development of the project were related to putting the video decoder to work. Also, the 
synchronization tasks (horizontal and vertical) required some clever solutions such as the interleaving 
between writing to and reading from the block RAMs (through the fil_level signal). Moreover, although 
we used polling for these types of synchronizations, a seemly better strategy would be to use interrupts. 
However, the overhead associated with context switching and machine status saving at each interrupt 
request would have to be careful analyzed if we wanted to change from polling to interrupts. Another 
extension would be to use RGB 888 instead of RGB 565. This, however, would require a DRAM 
controller being implemented inside the FPGA. The reason is because the SRAM does not have 
enough room for a reasonably large image where each pixel consumes 24 bits. The YUV to RGB 
hardware module, however, actually converts YUV to RGB 888. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX 
 
VGA module and its timing diagram: 
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y_dim = contraint_y
y_pos = i

color_run = 0
j = x
i++

x_dim = x_dim_tmp
y_dim = y_dim_tmp
x_pos = x_pos_tmp
y_pos = y_pos_tmp

i=0,x++,
constraint_y = 0
color_run = 0

x_dim_tmp = HORZ_RES+1 
y_dim_tmp = 0
x_pos_tmp = x

Y

N

Y

Y

N

YN

Y

N

Y

N

Y

N

Y

N

End
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OPB_VIDEODEC.VHD 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
 
entity opb_videodec is 
  generic ( 
    C_OPB_AWIDTH : integer := 32; 
    C_OPB_DWIDTH : integer := 32; 
    C_BASEADDR   : std_logic_vector := X"0180_0000";   -- 512 positions of 32  
    C_HIGHADDR   : std_logic_vector := X"0180_3FFF");  -- bits plus extra room. 
                                                       -- Each 32 bits in the 
                                                       -- block RAMs stores 4 
                                                       -- pixels' luminance  
   
  port ( 
    -- Global signals 
    OPB_Clk : in std_logic; 
    OPB_Rst : in std_logic; 
 
    -- OPB signals 
    OPB_ABus    : in std_logic_vector (31 downto 0); 
    OPB_BE      : in std_logic_vector (3 downto 0); 
    OPB_DBus    : in std_logic_vector (31 downto 0); 
    OPB_RNW     : in std_logic; 
    OPB_select  : in std_logic; 
    OPB_seqAddr : in std_logic; 
 
    -- Slave signals 
    VIDEC_DBus    : out std_logic_vector (31 downto 0); 
    VIDEC_errAck  : out std_logic; 
    VIDEC_retry   : out std_logic; 
    VIDEC_toutSup : out std_logic; 
    VIDEC_xferAck : out std_logic; 
 
    -- Coming from SAA7114H 
    IPort       : in std_logic_vector (7 downto 0); 
    HPort       : in std_logic_vector (7 downto 0); 
    IDQ         : in std_logic; 
    ICLK        : in std_logic; 
    IPGV        : in std_logic; 
    IPGH        : in std_logic; 
    ITRI        : out std_logic; 
    ITRDY       : out std_logic 
  ); 
end opb_videodec; 
 
architecture structural of opb_videodec is 
 
-- Buffered version of the signals 
-- with the same name in the entity 
signal buf_iclk : std_logic; 
signal buf_ipgh : std_logic; 
signal buf_ipgv : std_logic; 
signal buf_idq : std_logic; 
signal buf_iport : std_logic_vector (7 downto 0); 
signal buf_hport : std_logic_vector (7 downto 0); 



signal buf_itri : std_logic; 
signal buf_itrdy : std_logic; 
 
-- Latched versions of the above buffered signals 
signal latched_ipgh  : std_logic; 
signal latched_ipgv  : std_logic; 
signal latched_idq   : std_logic; 
signal latched_iport : std_logic_vector (7 downto 0); 
signal latched_hport : std_logic_vector (7 downto 0); 
 
-- Signals used when reading from block 
-- ram and filling status register 
signal cs : std_logic; 
signal ce : std_logic; 
signal rnw : std_logic; 
signal xfer : std_logic; 
 
-- raddr(8 downto 0) is used to address the 
-- block RAM. OPB_ABus(13) and OPB_ABus(12), which 
-- correspond to raddr(11) and raddr(10), are 
-- used to address the filling status register 
signal raddr : std_logic_vector (11 downto 0); 
 
-- Signals used by the filling level status 
-- The video decoder interface sends a set 
-- of signals indicating how much of the 
-- current line it has already written into 
-- the block RAMs (1/4, 1/2, 3/4 and 1) 
-- Microblaze keeps polling this signal 
signal filling_level : std_logic_vector(3 downto 0); 
 
-- Count the number of lines being written by the video decoder 
signal line_counter : std_logic_vector(15 downto 0); 
 
-- Count the frame (Actually, it's the frame ID 
signal frame_counter : std_logic_vector(1 downto 0); 
 
-- Data coming from video decoder interface 
signal data_from_decoder : std_logic_vector(15 downto 0); 
 
-- Data bus and latched data bus 
signal data_from_bram : std_logic_vector (31 downto 0); 
signal data_bus_ce : std_logic_vector (31 downto 0); 
 
-- Signals for the block ram state machine 
signal q2, q1, q0 : std_logic; 
 
-- Coming from video_decoder_intf, going to block_ram 
signal intf_idq_out  : std_logic; 
signal intf_iclk_out : std_logic; 
signal waddr : std_logic_vector (10 downto 0); 
signal luma_data : std_logic_vector (7 downto 0); 
 
-- Dummy signals. Reserved for future enhancements 
-- We currently not write from microblze (XIo_Out) 
signal wdata : std_logic_vector (31 downto 0); 
signal be    : std_logic_vector (3 downto 0); 



 
component block_ram is 
  port ( 
    waddr       : in std_logic_vector (10 downto 0); 
    data_in     : in std_logic_vector (7 downto 0); 
    raddr       : in std_logic_vector (8 downto 0); 
    data_out    : out std_logic_vector (31 downto 0); 
    idq         : in std_logic; 
    iclk        : in std_logic; 
    ipgh        : in std_logic; 
    clock       : in std_logic; 
    read_enable : in std_logic; 
    reset       : in std_logic 
  ); 
end component; 
 
component video_decoder_intf is 
  port ( 
    iport     : in std_logic_vector (7 downto 0); 
    hport     : in std_logic_vector (7 downto 0); 
    idq_in    : in std_logic; 
    iclk_in   : in std_logic; 
    ipgh      : in std_logic; 
    ipgv      : in std_logic; 
    data      : out std_logic_vector (15 downto 0);  
    waddr     : out std_logic_vector (10 downto 0); 
    idq_out   : out std_logic;   
    iclk_out  : out std_logic; 
    fil_level : out std_logic_vector(3 downto 0); 
    line_count: out std_logic_vector(15 downto 0); 
    frame_id  : out std_logic_vector(1 downto 0); 
    reset     : in std_logic 
  ); 
end component; 
 
component IBUFG is 
  port ( 
    I : in  std_logic; 
    O : out std_logic); 
end component; 
 
component IBUF 
  port ( 
    I : in  STD_ULOGIC; 
    O : out STD_ULOGIC); 
end component; 
 
component OBUF 
  port( 
    O: out std_ulogic; 
    I: in  std_ulogic 
    ); 
end component; 
 
component FD 
  port ( 
    C : in std_logic; 



    D : in std_logic; 
    Q : out std_logic); 
end component; 
 
  -- Setting the iob attribute to "true" ensures that instances of these 
  -- components are placed inside the I/O pads and are therefore very fast 
   
attribute iob : string; 
attribute iob of FD : component is "true"; 
 
begin 
 
itrdy_buf : OBUF port map  ( 
  O => ITRDY, 
  I => buf_itrdy 
); 
 
itri_buf : OBUF port map  ( 
  O => ITRI, 
  I => buf_itri 
); 
   
vbuf : IBUFG port map ( 
  I => ICLK, 
  O => buf_iclk 
); 
 
ipgh_pinbuf : IBUF port map ( 
  I => IPGH, 
  O => buf_ipgh 
); 
 
ipgh_pinlatch : FD port map ( 
  C => buf_iclk, 
  D => buf_ipgh, 
  Q => latched_ipgh 
); 
 
ipgv_pinbuf : IBUF port map ( 
  I => IPGV, 
  O => buf_ipgv 
); 
 
ipgv_pinlatch : FD port map ( 
  C => buf_iclk, 
  D => buf_ipgv, 
  Q => latched_ipgv 
); 
 
idq_pinbuf : IBUF port map ( 
  I => IDQ, 
  O => buf_idq 
); 
 
idq_pinlatch : FD port map ( 
  C => buf_iclk, 
  D => buf_idq, 



  Q => latched_idq 
); 
 
databus : for i in 0 to 7 generate 
  I_data_pad : IBUF port map ( 
      I => IPORT(i), 
      O => buf_iport(i)); 
 
  I_data_ff : FD port map ( 
      C => buf_iclk, 
      D => buf_iport(i), 
      Q => latched_iport(i)); 
 
  H_data_pad : IBUF port map ( 
      I => HPORT(i), 
      O => buf_hport (i)); 
 
  H_data_ff : FD port map ( 
      C => buf_iclk, 
      D => buf_hport(i), 
      Q => latched_hport(i)); 
end generate; 
 
u1 : block_ram  
port map 
( 
    waddr => waddr, 
    data_in => luma_data, 
    raddr => raddr(8 downto 0), 
    data_out => data_from_bram, 
    idq => intf_idq_out, 
    iclk => intf_iclk_out, 
    ipgh => latched_ipgh, 
    clock => OPB_Clk, 
    read_enable => '1', 
    reset => OPB_Rst 
); 
 
u2 : video_decoder_intf 
port map ( 
    iport => latched_iport, 
    hport => latched_hport, 
    idq_in => latched_idq, 
    iclk_in => buf_iclk, -- For tests, use OPB_Clk 
    ipgh => latched_ipgh, 
    ipgv => latched_ipgv, 
    data => data_from_decoder, 
    waddr => waddr, 
    idq_out  => intf_idq_out, 
    iclk_out => intf_iclk_out, 
    fil_level => filling_level, 
    line_count => line_counter, 
    frame_id => frame_counter, 
    reset => OPB_Rst 
); 
 
-- Chip select for block RAM - port A of block RAMs is memory mapped 



-- The binary number is X"0180" concatenated with binary "00" 
cs <= OPB_select when OPB_ABus(31 downto 14) = "000000011000000000" else '0'; 
           
 
-- Latching read address. Used to address port A of block RAMs 
process (OPB_Clk) 
begin 
  if OPB_Clk'event and OPB_Clk = '1' then 
    if OPB_RST = '1' then 
      raddr <= "000000000000"; 
    else 
      raddr <= OPB_ABus(13 downto 2); 
    end if; 
  end if; 
end process; 
 
 
-- Latching RNW signal 
process (OPB_Clk) 
begin 
  if OPB_Clk'event and OPB_Clk = '1' then 
    if OPB_Rst = '1' then 
      rnw <= '0'; 
    else 
      rnw <= OPB_RNW; 
    end if; 
  end if; 
end process; 
 
 
-- Latching BE signal (byte enable). Dummy signal 
process (OPB_Clk) 
begin 
  if OPB_Clk'event and OPB_Clk = '1' then 
    if OPB_Rst = '1' then 
      be <= "0000"; 
    else 
      be <= OPB_BE; 
    end if; 
  end if; 
end process; 
 
 
-- The following process is dummy. It is used to 
-- create a mux between this entity and OPB_DBus 
process (OPB_Clk) 
begin 
  if OPB_Clk'event and OPB_Clk = '1' then 
    if OPB_Rst = '1' then 
      wdata <= X"0000_0000"; 
    else 
      wdata <= OPB_DBus;  
    end if; 
  end if;    
end process; 
 
 



-- State machine for reading the block RAM 
process (OPB_Clk) 
begin 
  if OPB_Clk'event and OPB_Clk='1' then 
    q2 <= (not q2 and q1) or (q2 and not q1); 
    q1 <= (cs and not q2 and not q1) or (q2 and not q1); 
    q0 <= q2 and not q1; 
  end if; 
end process; 
 
-- CE is data latch enable 
ce <= q2 and not q1 and rnw; 
 
-- Latch the data coming from the block RAM 
-- or from the filling status register 
-- at address 01803FFC 
process (OPB_Clk, OPB_Rst) 
begin 
  if OPB_Rst='1' then 
    data_bus_ce <= X"00000000";  
  elsif OPB_Clk'event and OPB_Clk='1' then 
    if ce='1' then 
      if raddr(11)='1' and raddr(10)='1' then 
        data_bus_ce <= "0000000000000000000000000000" & filling_level; 
      elsif raddr(11)='1' and raddr(10)='0' then 
        data_bus_ce <= "0000000000000000000000000000000" & latched_ipgv; 
      elsif raddr(11)='0' and raddr(10)='1' then 
        data_bus_ce <= X"0000" & line_counter; 
      elsif raddr(11)='0' and raddr(10)='0' and raddr(9)='1' then 
        data_bus_ce <= "0000000000000000000000000000000" & frame_counter(0); 
      else 
        data_bus_ce <= data_from_bram; 
      end if; 
    else 
      data_bus_ce <= X"00000000"; 
    end if; 
  end if; 
end process; 
 
-- Connect luma bits from video decoder interface to block RAMs input data bus 
luma_data <= data_from_decoder(15 downto 8); 
 
-- XFER is transfer acknowledge 
xfer <= q0; 
 
-- Slave data bus 
VIDEC_DBus(31 downto 0) <= data_bus_ce; 
 
-- Tie unused signals to zero 
VIDEC_errAck <= '0'; 
VIDEC_retry <= '0'; 
VIDEC_toutSup <= '0'; 
VIDEC_xferAck <= xfer; 
buf_itri <= '1'; 
buf_itrdy <= '1'; 
 
end structural; 



VIDEO_DECODER_INTF.VHD 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity video_decoder_intf is 
  port ( 
    iport     : in std_logic_vector (7 downto 0); 
    hport     : in std_logic_vector (7 downto 0); 
    idq_in    : in std_logic; 
    iclk_in   : in std_logic; 
    ipgh      : in std_logic; 
    ipgv      : in std_logic; 
    data      : out std_logic_vector (15 downto 0);  
    waddr     : out std_logic_vector (10 downto 0); 
    idq_out   : out std_logic;   
    iclk_out  : out std_logic; 
    fil_level : out std_logic_vector(3 downto 0); 
    line_count: out std_logic_vector(15 downto 0); 
    frame_id  : out std_logic_vector(1 downto 0); 
    reset     : in std_logic 
  ); 
end video_decoder_intf; 
 
architecture structural of video_decoder_intf is 
 
signal active     : std_logic; 
signal pix_count  : std_logic_vector (10 downto 0); 
signal pixel_addr : std_logic_vector(10 downto 0); 
 
signal line_counter : std_logic_vector(15 downto 0); 
signal frame_counter : std_logic_vector(1 downto 0); 
 
-- The following signals indicate how much of the 
-- line was already written into  the  block  RAM 
signal one_fourth     : std_logic; 
signal half_line      : std_logic; 
signal three_quarters : std_logic; 
signal entire_line    : std_logic; 
signal filling_level  : std_logic_vector(3 downto 0); 
 
begin 
 
-- pixel address - where to store valid pixels in the block RAMs 
process (iclk_in, reset) 
begin 
 if reset='1' then 
    pixel_addr <= "00000000000"; 
 elsif iclk_in'event and iclk_in='1' then 
   if ipgh='0' then 
     pixel_addr <= "00000000000"; 
   elsif idq_in = '1' and active = '1' then 
     pixel_addr <= pixel_addr + 1; 
   end if; 
 end if; 
end process; 



 
-- count the actual data coming from iport and hport. 
-- Some data is control (FF, 00 , 00 , SAV business) 
-- Reset the counter whenever ipgh is zero 
process (iclk_in, reset) 
begin 
  if reset='1' then 
    pix_count <= "00000000000"; 
  elsif iclk_in'event and iclk_in='1' then 
    if idq_in='1' then 
      if ipgh='0' then 
        pix_count <= "00000000000"; 
      else 
        pix_count <= pix_count + 1; 
      end if;  
    end if; 
  end if; 
end process; 
 
-- count the number of lines 
process (iclk_in, reset) 
begin 
  if reset='1' then 
    line_counter <= X"0000"; 
  elsif iclk_in'event and iclk_in='1' then 
    if ipgv='0' then 
      line_counter <= X"0000"; 
    elsif ipgh='1' and pix_count=719 then 
      line_counter <= line_counter + 1; 
    end if; 
  end if; 
end process; 
 
-- give the frame ID 
process (iclk_in, reset) 
begin 
  if reset='1' then 
    frame_counter <= "00"; 
  elsif iclk_in'event and iclk_in='1' then 
    if line_counter = 239 and pix_count=719 then 
      frame_counter <= frame_counter+1; 
    end if; 
  end if; 
end process; 
 
-- Active means we are within 
-- the horizontal line active video 
process (iclk_in) 
begin 
 if iclk_in'event and iclk_in='1' then 
   if ipgh='0' then 
     active <= '0'; 
   elsif pix_count = 1 then 
     active <= '1'; 
   elsif pix_count=720 then 
     active <= '0'; 
   end if; 



 end if; 
end process; 
 
-- Set output signals according to where 
-- in the current line the video decoder 
-- is writing the block RAM 
process (iclk_in, reset) 
begin 
 if reset='1' then 
   one_fourth <= '0'; 
 elsif iclk_in'event and iclk_in='1' then 
   if pix_count=0 then 
     one_fourth <= '0'; 
   elsif pix_count=161 then 
     one_fourth <= '1'; 
   end if; 
 end if; 
end process; 
 
process (iclk_in, reset) 
begin 
 if reset='1' then 
   half_line <= '0'; 
 elsif iclk_in'event and iclk_in='1' then 
   if pix_count=0 then 
     half_line <= '0'; 
   elsif pix_count=321 then 
     half_line <= '1'; 
   end if; 
 end if; 
end process; 
 
process (iclk_in, reset) 
begin 
 if reset='1' then 
   three_quarters <= '0'; 
 elsif iclk_in'event and iclk_in='1' then 
   if pix_count=0 then 
     three_quarters <= '0'; 
   elsif pix_count=481 then 
     three_quarters <= '1'; 
   end if; 
 end if; 
end process; 
 
process (iclk_in, reset) 
begin 
 if reset='1' then 
   entire_line <= '0'; 
 elsif iclk_in'event and iclk_in='1' then 
   if pix_count=0 then 
     entire_line <= '0'; 
   elsif pix_count=641 then 
     entire_line <= '1'; 
   end if; 
 end if; 
end process; 



 
 
filling_level(0) <= one_fourth; 
filling_level(1) <= half_line; 
filling_level(2) <= three_quarters; 
filling_level(3) <= entire_line; 
 
 
-- Output signals of this entity 
 
fil_level <= filling_level; 
line_count <= line_counter; 
frame_id <= frame_counter; 
 
data(15 downto 8) <= iport; 
data(7 downto 0)  <= hport; 
 
waddr <= pixel_addr; 
iclk_out <= iclk_in; 
idq_out <= idq_in; 
 
end structural; 
 
 
 
-- Test generator 
-- signal pixel_data : std_logic_vector(15 downto 0); 
 
-- begin 
   
-- -- pixel data 
-- process (iclk_in, reset) 
-- begin 
--   if reset='1' then 
--     pixel_data <= X"00FF"; 
--   elsif iclk_in'event and iclk_in = '1' then 
--       pixel_data <= pixel_data + X"100"; 
--   end if; 
-- end process; 
 
-- -- pixel address - where to store in the block RAMs 
-- process (iclk_in, reset) 
-- begin 
--   if reset='1' then 
--      pixel_addr <= "00000000000"; 
--   elsif iclk_in'event and iclk_in='1' then 
--      pixel_addr <= pixel_addr + 1; 
--   end if; 
-- end process; 
 
 
-- data <= pixel_data; 
-- waddr <= pixel_addr; 
-- iclk_out <= iclk_in; 
-- idq_out <= '1'; 
 
-- end structural; 



BLOCK_RAM.VHD 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
-- Four RAMB4_S8_S8 components instantiated. 
-- Each one stores 8 bits of information (luma) 
-- on each memory cell. Block 0 stores pixels 
-- 0,4,8, etc. Block 1 stores pixels 1, 5, 9, etc, 
-- Block 2 stores pixels 2, 6, 10, etc. and 
-- Block 3 stores pixels 3, 7, 11, etc. 
-- and so on. 
entity block_ram is 
  port ( 
    -- Address generated by video decoder intf module 
    -- (video_decoder_intf.vhd). All block-RAMs see 
    -- the same 9 *upper* bits. The remaining 2 *lower* 
    -- bits are used to choose which block to store. 
    waddr : in std_logic_vector (10 downto 0); 
 
    -- Luminance data coming from the video decoder 
    -- The video decoder is actually being configured 
    -- to transmit 16-bit data (upper bits are luma, 
    -- lower bits are chroma). However, the chroma 
    -- bits are just being disconsidered as of now. 
    data_in : in std_logic_vector (7 downto 0); 
 
    -- Read address. Generated by microblaze every 
    -- time one executes XIO_In32. Microblaze reads 
    -- four pixels at a time: pixel "i" from block 
    -- 0, pixel "i+1" from block 1, pixel "i+2" 
    -- from block 2 and pixel "i+3" from block 3. 
    -- That's why the *lower* bits of addr are used. 
    raddr : in std_logic_vector (8 downto 0); 
 
    -- Data going to microblaze. The 32 bits read 
    -- correspond to 4 pixels, each one coming 
    -- from a specific block RAM. 
    data_out : out std_logic_vector (31 downto 0); 
 
    -- IDQ is '1' when valid data is 
    -- coming from video decoder 
    idq : in std_logic; 
 
    -- clock for port B is ICLK 
    -- from video decoder 
    iclk : in std_logic; 
 
    -- From the video decoder 
    ipgh : in std_logic; 
 
    -- clock for port A is 
    -- clk from CPU 
    clock : in std_logic; 
 
    -- Read enable 
    read_enable : in std_logic; 
 



    -- Reset 
    reset : in std_logic 
  ); 
end block_ram; 
 
architecture structural of block_ram is 
 
-- Dual-port block RAM used for storing data coming from video decoder 
-- Port B is written by the video decoder intf, Port A is read by CPU. 
-- See  "http://www.xilinx.com/bvdocs/appnotes/xapp173.pdf" 
component RAMB4_S8_S8 
  generic ( 
    INIT_00, INIT_01, INIT_02, INIT_03, INIT_04, INIT_05,  
    INIT_06, INIT_07, INIT_08, INIT_09, INIT_0a, INIT_0b,   
    INIT_0c, INIT_0d, INIT_0e, INIT_0f: bit_vector(255 downto 0) 
    :=X"0000000000000000000000000000000000000000000000000000000000000000" 
  ); 
  port  (   
    DIA,DIB : in STD_LOGIC_VECTOR (7 downto 0); 
    ENA,ENB : in STD_logic; 
    WEA,WEB : in STD_logic; 
    RSTA,RSTB  : in STD_logic; 
    CLKA,CLKB  : in STD_logic; 
    ADDRA,ADDRB : in STD_LOGIC_VECTOR (8 downto 0); 
    DOA,DOB : out STD_LOGIC_VECTOR (7 downto 0)  
  );  
end component; 
 
-- i_clock is ICLK from video decoder 
-- opb_clock is opb_clk from OPB bus 
signal i_clock : std_logic; 
signal opb_clock : std_logic; 
 
-- Read enable 
signal r_en : std_logic; 
 
-- Reset 
signal rst : std_logic; 
 
-- Shared address bus for all 4 block RAMs 
signal addr_a : std_logic_vector (8 downto 0); 
signal addr_b : std_logic_vector (8 downto 0); 
 
-- Enable signals for distinct blocks 
signal enb0, enb1, enb2, enb3 : std_logic; 
 
-- Data coming from video decoder interface to B ports 
signal data_in_signal : std_logic_vector (7 downto 0); 
 
-- Data going to OPB Bus from A ports 
signal data_out_a0 : std_logic_vector (7 downto 0); 
signal data_out_a1 : std_logic_vector (7 downto 0); 
signal data_out_a2 : std_logic_vector (7 downto 0); 
signal data_out_a3 : std_logic_vector (7 downto 0); 
 
 
begin 



 
block_0: RAMB4_S8_S8 -- 512 words of 8 bits 
port map  
( 
  DIA => X"00", DIB => data_in_signal, 
  ENA => r_en, ENB => '1', 
  WEA => '0', WEB => enb0, 
  RSTA => rst, RSTB => rst, 
  CLKA => opb_clock, CLKB => i_clock, 
  ADDRA => addr_a, ADDRB => addr_b, 
  DOA => data_out_a0, DOB => open 
); 
 
 
block_1: RAMB4_S8_S8 -- 512 words of 8 bits 
port map 
( 
  DIA => X"00", DIB => data_in_signal, 
  ENA => r_en, ENB => '1', 
  WEA => '0', WEB => enb1, 
  RSTA => rst, RSTB => rst, 
  CLKA => opb_clock, CLKB => i_clock, 
  ADDRA => addr_a, ADDRB => addr_b, 
  DOA => data_out_a1, DOB => open 
); 
 
 
block_2: RAMB4_S8_S8 -- 512 words of 8 bits 
port map 
( 
  DIA => X"00", DIB => data_in_signal, 
  ENA => r_en, ENB => '1', 
  WEA => '0', WEB => enb2, 
  RSTA => rst, RSTB => rst, 
  CLKA => opb_clock, CLKB => i_clock, 
  ADDRA => addr_a, ADDRB => addr_b, 
  DOA => data_out_a2, DOB => open 
); 
 
 
block_3: RAMB4_S8_S8 -- 512 words of 8 bits 
port map 
( 
  DIA => X"00", DIB => data_in_signal, 
  ENA => r_en, ENB => '1', 
  WEA => '0', WEB => enb3, 
  RSTA => rst, RSTB => rst, 
  CLKA => opb_clock, CLKB => i_clock, 
  ADDRA => addr_a, ADDRB => addr_b, 
  DOA => data_out_a3, DOB => open 
); 
 
-- Uncomment the following lines if you don't want to skip pixels 
-- Then comment the four lines indicating Y0, Y2, Y4, Y6 below. 
--enb0 <= idq and ipgh and not waddr(1) and not waddr(0); 
--enb1 <= idq and ipgh and     waddr(1) and not waddr(0); 
--enb2 <= idq and ipgh and not waddr(1) and not waddr(0); 



--enb3 <= idq and ipgh and     waddr(1) and not waddr(0); 
 
enb0 <= idq and ipgh and not waddr(2) and not waddr(1) and not waddr(0); -- Y0 
enb1 <= idq and ipgh and not waddr(2) and     waddr(1) and not waddr(0);  -- Y2 
enb2 <= idq and ipgh and     waddr(2) and not waddr(1) and not waddr(0);  -- Y4 
enb3 <= idq and ipgh and     waddr(2) and     waddr(1) and not waddr(0);  -- Y6 
 
-- Data out merger 
data_out(31 downto 24) <= data_out_a0; 
data_out(23 downto 16) <= data_out_a1; 
data_out(15 downto 8)  <= data_out_a2; 
data_out(7 downto 0)   <= data_out_a3; 
 
-- Data in 
data_in_signal <= data_in; 
 
 
-- Actual bits addressing block RAMs, port A 
addr_a <= raddr; 
 
 
-- Uncomment the following line if you don't want to skip pixels 
-- addr_b <= waddr(10 downto 2); 
 
-- Actual bits addressing block RAMs, port B 
addr_b <= "0" & waddr(10 downto 3); 
 
-- Connect clocks and reset 
i_clock <= iclk; 
opb_clock <= clock; 
rst <= reset; 
 
-- Read enable 
r_en <= read_enable; 
 
end structural; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



OPB_I2CCONTROLLER.VHD 
library ieee; 
use ieee.std_logic_1164.all; 
 
 
entity opb_i2ccontroller is  -- USER -- 
  generic 
  ( 
    C_OPB_AWIDTH       : integer          := 32; 
    C_OPB_DWIDTH       : integer          := 32; 
    C_BASEADDR         : std_logic_vector := X"FEFF0200"; 
    C_HIGHADDR         : std_logic_vector := X"FEFF02FF"); 
   
  port 
  ( 
    --Required OPB bus ports, do not add to or delete 
    OPB_ABus     : in  std_logic_vector(0 to C_OPB_AWIDTH-1); 
    OPB_BE       : in  std_logic_vector(0 to C_OPB_DWIDTH/8-1); 
    OPB_Clk      : in  std_logic; 
    OPB_DBus     : in  std_logic_vector(0 to C_OPB_DWIDTH-1); 
    OPB_RNW      : in  std_logic; 
    OPB_Rst      : in  std_logic; 
    OPB_select   : in  std_logic; 
    OPB_seqAddr  : in  std_logic; 
    VID_I2C_DBus     : out std_logic_vector(0 to C_OPB_DWIDTH-1); 
    VID_I2C_errAck   : out std_logic; 
    VID_I2C_retry    : out std_logic; 
    VID_I2C_toutSup  : out std_logic; 
    VID_I2C_xferAck  : out std_logic; 
 
    -- USER -- 
    VID_I2C_SCL      : inout std_logic; 
    VID_I2C_SDA      : inout std_logic     
  ); 
  
end entity opb_i2ccontroller; --USER--  
 
------------------------------------------------------------------------------
- 
-- architecture 
------------------------------------------------------------------------------
- 
 
architecture imp of opb_i2ccontroller is --USER--  
 
component IOBUF_F_12 
 port ( 
    O : out STD_ULOGIC; 
    IO : inout STD_ULOGIC; 
    I : in STD_ULOGIC; 
    T : in STD_ULOGIC); 
end component; 
  
signal wdata : std_logic_vector(0 to 7); 
signal rdata : std_logic_vector(0 to 7); 
signal rnw  : std_logic; 
signal cs, xfer : std_logic; 



signal q0,q1 : std_logic; 
signal i2c_din : std_logic; 
 
begin 
 
 
sda_pad : IOBUF_F_12 port map ( 
  I => wdata(0), 
  IO => VID_I2C_SDA, 
  O =>  i2c_din, 
  T => wdata(1) 
); 
 
scl_pad : IOBUF_F_12 port map ( 
  I => wdata(2), 
  IO => VID_I2C_SCL, 
  O => open, 
  T => wdata(3) 
); 
   
-- Chip select, memory mapped. XIoOut8 for selecting the I2C controller 
process (OPB_select, OPB_ABus) 
begin 
 
  if(OPB_select='1' and OPB_ABus(0 to 23)=C_BASEADDR(0 to 23)) then 
    cs <= '1'; else 
    cs <= '0'; 
  end if;   
end process; 
   
 
-- I2C Bus SDA interconnection 
process (OPB_Clk,OPB_Rst) 
begin 
  if (OPB_Rst='1') then 
    wdata <= "11111111"; 
    rdata <= "00000000"; 
     
  elsif OPB_Clk'event and OPB_Clk = '1' then 
    rnw <= OPB_RNW; 
 
    if (q1 = '0' and q0 = '1' and rnw='0') then 
       wdata <= OPB_DBus(0 to 7); 
    end if; 
 
    if (q1='1') then 
       rdata <= "00000000"; 
    elsif (q1='0' and q0='1' and rnw = '1') then 
       rdata <= i2c_din & "0000000"; 
    end if;     
 
  end if; 
end process; 
 
 
process (OPB_Clk,OPB_Rst) 
begin 



  if (OPB_Rst = '1') then 
    q0 <= '0'; 
    q1 <= '0'; 
  elsif OPB_Clk'event and OPB_Clk='1' then 
    q1 <= not q1 and q0; 
    q0 <= not q1 and not q0 and cs; 
  end if; 
end process; 
 
xfer <= q1; 
 
VID_I2C_xferAck <= xfer; 
 
VID_I2C_DBus <= rdata & X"000000"; 
 
VID_I2C_errAck <= '0'; 
 
VID_I2C_retry <= '0'; 
 
VID_I2C_toutSup <= '0'; 
 
end architecture imp; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



WRITE_VIDEO.C 
 
#include "xbasic_types.h" 
#include "xio.h" 
 
#define W 640 
#define VGA_START 0x00800000 
#define BRAM_START 0x01800000 
 
// Transfer a section of "line" starting at pixel // 
// "start" and ending at  pixel  "end"  from  the // 
// block RAMs to the SRAM.                        // 
void write_video(int start, int end, int line) 
{ 
  int nPixs; 
  Xuint32 luma_4pixels; 
  Xuint32 bram_addr; 
  Xuint32 vga_addr; 
 
  nPixs = (end - start); 
  vga_addr = VGA_START + (start>>1) + W*line;  
  bram_addr = BRAM_START + (start>>1); 
 
  while (nPixs > 0) 
  { 
    luma_4pixels = XIo_In32(bram_addr+0); 
    XIo_Out32(vga_addr+0, luma_4pixels); 
 
    luma_4pixels = XIo_In32(bram_addr+4); 
    XIo_Out32(vga_addr+4, luma_4pixels); 
 
    luma_4pixels = XIo_In32(bram_addr+8); 
    XIo_Out32(vga_addr+8, luma_4pixels); 
 
    luma_4pixels = XIo_In32(bram_addr+12); 
    XIo_Out32(vga_addr+12, luma_4pixels); 
 
    bram_addr += 16; 
    vga_addr += 16; 
 
    // Skip pixels // 
    nPixs -=32; 
 
    // If we lose vertical synchronism in the meantime // 
    // then break from the "while" and return          // 
    if (!XIo_In32(0x01802FFC)) 
      break; 
  } 
} 
 
 
 
 
 
 
 
 



CHAR_PRINTING.C 
 
#include "xbasic_types.h" 
#include "xio.h" 
#include "font_8x8.h" 
 
#define W 640 
#define H 480 
#define VGA_START 0x00800000 
 
#define RED 0xE0 
#define GREEN 0x1C 
#define BLUE 0x03 
 
void 
draw_char (int x, int y, unsigned char ch) 
{ 
  int row, col; 
  short int row_template; 
 
  // "Times 8" used  to  index  the // 
  // array declared in "font_8x8.h" // 
  int init_pos = ch * 8; 
 
  // Print the 8 rows of the character // 
  // in the outermost loop             // 
  for (row = y; row < y + 8; row++) 
  { 
    // Read the character into a  short // 
    // int variable to be able to shift // 
    row_template = fontdata_8x8[row - y + init_pos]; 
 
    // Print each pixel that is 1 or 0 // 
    // in  the  character's  template  // 
    for (col = x; col < x + 8; col++) 
    { 
      // The varying  amount  of  shifting // 
      // at each iteration takes  care  of // 
      // analyzing the right bit at a time // 
      if ((row_template << col-x) & 0x80) 
      { 
     XIo_Out8(VGA_START + col + 640*row, RED|GREEN|BLUE); 
      } 
      // To take  care  of  cleaning  something // 
      // already written (write the background) // 
      else 
      { 
        XIo_Out8(VGA_START + col + 640*row, 0);  
      } 
    } 
  } 
} 
 
void draw_string(int x, int y, char *s) 
{ 
  while(*s) draw_char(x+=8, y, *s++); 
} 



 
// This function can be used for debuging purposes // 
void draw_hex(int x, int y, int n) 
{ 
  int i, d; 
  char c; 
  for(i=0; i<8;i++){ 
    d=(n>>28)&0x0F; 
    c = d>9 ? d-10+'A' : d+'0'; 
    draw_char(x+=8, y, c); 
    n<<=4; 
  } 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TRACK_OBJECT.C 
 
#include "xbasic_types.h" 
#include "xio.h" 
 
#define HORZ_RES 320 
#define VERT_RES 240 
#define W 320 
#define H 240 
#define MIN_X_DIM 2 
#define MIN_Y_DIM 2 
#define TOLERANCE 10 
#define color_match 0xC0 
#define VGA_START 0x00800000 
 
/*  
   The way this search algorithm works is quite simple. It first traverses  
   through the video_sram, looking for a particular "color_match" in a  
   sequence. From the current starting position in each line, it calculates 
   the number of consecutive instances of "color_match" it can find and stores 
   it to a 1-D array (each element corresponding to each horizontal line.  
 
   Then the second segment of the code actually traverses ONLY through this  
   1-D array created and looks for a consistent run of values that are more  
   than the "MIN_X_DIM". Then once this traversal is complete, it now knows  
   how many acceptable values of "color_run" occur in a sequence. Then it  
   stores that value temporarily along with the corresponding Y value the  
   sequence started at. 
 
   Finally, the values of x_dim_tmp and y_dim_tmp are compared with the current 
   values of x_dim and y_dim. Currently the decision is based on area, and if  
   need be to speed up the program, it can always be changed to a simple comparison 
   between x_dim, y_dim and X_dim_tmp and y_dim_tmp. 
*/  
 
void track_object() 
{ 
  int line, pix; 
  int color_run; 
  int count; 
  int i, j, x;  
  int upperbound, lowerbound; 
  int constraint_y; 
  int x_dim, y_dim; 
  int x_pos, y_pos; 
  int y_pos_tmp, x_pos_tmp; 
  int x_dim_tmp, y_dim_tmp; 
  Xuint8 video_byte; 
  int flag_x_fail = 0; 
 
  count = 0; 
  i = 0; 
  j = 0; 
  x_dim=0; 
  y_dim=0; 
  constraint_y = 0; 
  upperbound = color_match + TOLERANCE; 



  lowerbound = color_match - TOLERANCE;   
 
  for(x = 0; x < HORZ_RES; x++) 
  { 
    // Traversing through video_sram to get the values of  
    // matches for a particular color within a "tolerance" 
        
    // The program can be altered very easily to change the 
    // search color on the fly looking for any number of colors 
    // by changing the color_match variable.  
     
 
    // setting the current x_dim_tmp // 
    // to a relative infinity        // 
    x_dim_tmp = HORZ_RES + 1; 
 
    constraint_y = 0; 
    y_dim_tmp = 0; 
    x_pos_tmp = x;  
 
    for (i = 0; i < VERT_RES ; i++) 
    { 
      color_run = 0; 
      flag_x_fail = 0; 
      /*  
  Inner loop that checks values from the current x  
  position till the end of the video_sram array 
   
  This is the ONLY place where video_sram is being accessed. 
      */ 
      for(j = x; ((j < HORZ_RES)&&(flag_x_fail == 0)); j++)  
      { 
         
 // Checks to see if the current videosram value is out of range 
 // if the mismatch was found then the fail_x_flag is set as we  
 // are not interested in any of the values that would occur after 
 // the first anomalitiy. 
 
 video_byte = XIo_In8(VGA_START + j + 640*i); 
 if((video_byte > upperbound ) || (video_byte < lowerbound )) 
 { 
   flag_x_fail =1; 
   break; 
 } 
 else // else adds one to it's counter 
 { 
   color_run++; 
 } 
      } 
 
      // Here is where the 2-d recognition comes into play. This is  
      // the second part of the algorithm where it looks for the  
      // consistency in consistency of color values per se.      
       
      // If it finds a decent consistency (i.e. one that satisfies 
      // both the x_dim and y_dim constraints) then it will store  
      // the x coordinate in x_pos_tmp and y coordinate in y_pos_tmp 



      // and the corresponding x and y dimensions in x_dim_temp and  
      // y_dim_temp respectivley.  
       
      // We have just encountered a place where we have seen that  
      // the color_run value is more than the minimum x dimension 
      // so we have to first increment the constraint_y value and 
      // possibly update the y_pos_tmp value to the index of the  
      // start of the sequence.  
      //  
      // Also in the current color_run value was found to be lower 
      // than the current x_dim_tmp, then you need to reassign it  
      // as the x dimension of the rectangle will be decided by the 
      // lowest value of color_run in acceptable range of x_dim value 
 
      if (color_run >= MIN_X_DIM) 
      { 
 constraint_y++; 
 if(color_run < x_dim_tmp) 
   x_dim_tmp = color_run; 
 if (constraint_y > y_dim) 
 { 
   y_dim_tmp = constraint_y; 
   y_pos_tmp = i - constraint_y + 1; 
 } 
      } 
 
      if (color_run < MIN_X_DIM) 
      { 
 if (constraint_y > y_dim) 
 { 
   y_dim = constraint_y; 
   y_pos = i; 
 } 
 constraint_y = 0; 
      } 
    } 
     
     
     
    // Now that the program has the values of the last best rectangle, 
    // it compares it with the x and y dimensions of the one that was  
    // just found (if any).  
       
    // Currently the reassignment is made if the new rectangle has a  
    // greater area than the older one. But for optimization, this can 
    // be tossed for simpler decision criteia. 
 
    if ((x_dim_tmp * y_dim_tmp) > (x_dim * y_dim)) { 
      x_dim = x_dim_tmp; 
      y_dim = y_dim_tmp; 
      x_pos = x_pos_tmp; 
      y_pos = y_pos_tmp; 
    } 
     
     
  } // main for loop 
 



   
  // These are the values that are read // 
  // out of the image and may be written // 
  // to any part of the memory.          // 
   
  for (j = x_pos-2; j < x_pos+ 2 + x_dim; j+=2) 
  { 
    XIo_Out8(VGA_START + j + 640*(y_pos) ,0x95); 
    XIo_Out8(VGA_START + j + 640*(y_pos+y_dim) ,0x95); 
  } 
 
  for (i = y_pos-2; i < y_pos+ 2 + y_dim; i+=2) 
  { 
    XIo_Out8(VGA_START + x_pos + 640*(i) ,0x95); 
    XIo_Out8(VGA_START + x_pos+x_dim + 640*(i) ,0x95); 
  } 
 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



MAIN.C 
 
 
#include "xbasic_types.h" 
#include "xio.h" 
 
#define W 640 
#define H 480 
#define VGA_START 0x00800000 
#define RED 0xE0 
#define GREEN 0x1C 
#define BLUE 0x03 
 
extern void write_video(int start, int end, int line); 
extern void track_object(); 
 
// Register addresses for SAA7114H configuration 
unsigned char registers [] = { 
 
  // Video decoder "generic" registers // 
  0x01, 0x08, // Recommended setting 
  0x02, 0xE9, // Analog input control 1 and input selection 
  0x03, 0x10, // Analog input control 2 
  0x04, 0x90, // Analog input control 3 
  0x05, 0x90, // Analog input control 4 
  0x06, 0xEB, // Horizontal Sync Start (delay) 
  0x07, 0xE0, // Horizontal Sync Stop (delay) 
  0x08, 0x59, // Sync control 
  0x09, 0x40, // Luminance control 
  0x0A, 0x80, 
  0x0B, 0x44, 
  0x0C, 0x40, 
  0x0D, 0x00, 
  0x0E, 0x89, 
  0x0F, 0x2A, // Chrominance gain 
  0x10, 0x0E, // Chrominance control 
  0x11, 0x00, 
  0x12, 0x46, // RT signal control 
  0x13, 0x00, 
  0x14, 0x00, 
  0x15, 0x11, 
  0x16, 0xFE, 
  0x17, 0x40, 
  0x18, 0x40, 
  0x19, 0x80, 
  0x1A, 0x00, 
  0x1B, 0x00, 
  0x1C, 0x00, 
  0x1D, 0x00, 
  0x1E, 0x00, 
  0x30, 0x08, // Audio clock stuff 
  0x31, 0x08, // Audio clock stuff 
  0x32, 0x02, 
  0x33, 0x00, 
  0x34, 0xCD,  
  0x35, 0xCC,  
  0x36, 0x3A,  



  0x37, 0x00, 
  0x38, 0x03,  
  0x39, 0x10,  
  0x3A, 0x00,  
  0x3B, 0x00, 
  0x3C, 0x00, 
  0x3D, 0x00, 
  0x3E, 0x00, 
  0x3F, 0x00, 
  0x40, 0x40,  
  0x41, 0xFF, 
  0x42, 0xFF, 
  0x43, 0xFF, 
  0x44, 0xFF, 
  0x45, 0xFF,  
  0x46, 0xFF,  
  0x47, 0xFF,  
  0x48, 0xFF, 
  0x49, 0xFF, 
  0x4A, 0xFF, 
  0x4B, 0xFF, 
  0x4C, 0xFF, 
  0x4D, 0xFF, 
  0x4E, 0xFF, 
  0x4F, 0xFF, 
  0x50, 0xFF, 
  0x51, 0xFF, 
  0x52, 0xFF, 
  0x53, 0xFF, 
  0x54, 0xFF, 
  0x55, 0xFF, 
  0x56, 0xFF, 
  0x57, 0xFF, 
  0x58, 0x40, 
  0x59, 0x47, 
  0x5A, 0x06, 
  0x5B, 0x03, 
  0x5C, 0x00, 
  0x5D, 0x3E,  
  0x5E, 0x00, 
  0x5F, 0x00, 
  0x80, 0x10, // Only Task A: 0x10 ;  Both tasks: 0x30. 
  0x83, 0x01, 
  0x84, 0xA0, 
  0x85, 0x10, 
  0x86, 0x45, 
  0x87, 0x01, 
  0x88, 0xF0, 
 
  // Task A Registers // 
  0x90, 0x00,  
  0x91, 0x08,  
  0x92, 0x10,  
  0x93, 0xC0,  
  0x94, 0x10,  
  0x95, 0x00, 
  0x96, 0xD0, 



  0x97, 0x02, 
  0x98, 0x0A, 
  0x99, 0x00, 
  0x9A, 0xF2,  
  0x9B, 0x00, 
  0x9C, 0xD0, // Horizontal output window size upper bits \ 0xD002 = 720 
  0x9D, 0x02, // Horizontal output window size lower bits /          by 
  0x9E, 0xF0, // Vertical output window size upper bits  \  0xF000 = 240 
  0x9F, 0x00, // Vertical output window size lower bits  / 
  0xA0, 0x01, 
  0xA1, 0x00, 
  0xA2, 0x00, 
  0xA4, 0x80, 
  0xA5, 0x40, 
  0xA6, 0x40, 
  0xA8, 0x00, 
  0xA9, 0x04, 
  0xAA, 0x00, 
  0xAC, 0x00, 
  0xAD, 0x02, 
  0xAE, 0x00, 
  0xB0, 0x00, 
  0xB1, 0x04, 
  0xB2, 0x00, 
  0xB3, 0x04,  
  0xB4, 0x00, 
  0xB8, 0x00, 
  0xB9, 0x00, 
  0xBA, 0x00, 
  0xBB, 0x00, 
  0xBC, 0x00, 
  0xBD, 0x00, 
  0xBE, 0x00, 
  0xBF, 0x00, 
 
  /* 
  // Task B Registers - Not being used as of now // 
  0xC0, 0x08,  
  0xC1, 0x08,  
  0xC2, 0x10,  
  0xC3, 0xC0,  
  0xC4, 0x10,  
  0xC5, 0x00, 
  0xC6, 0xD0,  
  0xC7, 0x02, 
  0xC8, 0x0A, 
  0xC9, 0x00, 
  0xCA, 0xF2, 
  0xCB, 0x00, 
  0xCC, 0xD0, 
  0xCD, 0x02, 
  0xCE, 0xF0, 
  0xCF, 0x00, 
  0xD0, 0x01, 
  0xD1, 0x00, 
  0xD2, 0x00, 
  0xD4, 0x80, 



  0xD5, 0x40, 
  0xD6, 0x40, 
  0xD8, 0x00, 
  0xD9, 0x04, 
  0xDA, 0x00, 
  0xDC, 0x00, 
  0xDD, 0x02, 
  0xDE, 0x00, 
  0xE0, 0x00, 
  0xE1, 0x04, 
  0xE2, 0x00, 
  0xE3, 0x04, 
  0xE4, 0x00, 
  0xE8, 0x00, 
  0xE9, 0x00, 
  0xEA, 0x00, 
  0xEB, 0x00, 
  0xEC, 0x00, 
  0xED, 0x00, 
  0xEE, 0x00, 
  0xEF, 0x00,*/ 
     
  // Reset sequence. Extremelly needed!!  
  // Do not comment the following out! // 
  0x88, 0xD8,   
  0x88, 0xF8,  
  0xFF, 0xFF,}; 
 
// Witness variable // 
int w = 0xFF; 
 
// Provide a delay between signal toggling // 
void i2c_delay() 
{ 
    int i; 
    for (i = 0; i < 1000; i++);  
} 
 
// Write "level" to SCL // 
void SCLw(int level) 
{ 
    if (level == 0) 
      w &= 0xDF; 
    else 
      w |= 0x2F; 
 
    // Assert the clock on SCL // 
    // according to level      // 
    XIo_Out8(0xFEFF0200, w); 
    i2c_delay();    
} 
 
// Write "level" to SDA // 
void SDAw(int level) 
{ 
    if (level == 0) 
      w &= 0x7F; 



    else 
      w |= 0x8F; 
 
    // Assert the clock on SDA // 
    // according to level      // 
    XIo_Out8(0xFEFF0200, w);  
    i2c_delay();   
} 
 
// Read from SDA // 
int SDAr() 
{ 
    int MSB = XIo_In8(0xFEFF0200); 
 
    MSB = MSB >> 7; 
    MSB &= 1; 
 
    i2c_delay(); 
    return MSB; 
} 
 
// Tristate for SDA // 
void SDAt(int rnw) 
{ 
    if (rnw == 0) 
      w &= 0xBF; 
    else 
      w |= 0x4F; 
 
    // Assert the clock on SDA // 
    // according to level      // 
    XIo_Out8(0xFEFF0200, w); 
    i2c_delay(); 
} 
 
// Tristate for SCL // 
void SCLt(int rnw) 
{ 
    if (rnw == 0) 
      w &= 0xEF; 
    else 
      w |= 0x1F; 
 
    // Assert the clock on SDA // 
    // according to level      // 
    XIo_Out8(0xFEFF0200, w); 
    i2c_delay(); 
} 
 
// Send the start sequence 
void send_start( void ) 
{ 
    SCLt(0); 
    SDAt(0); 
    SCLw(1); 
    SDAw(0); 
    SCLw(0); 



} 
 
// Send the restart sequence 
// Needed for read register 
void re_start( void )   /* This function must be entered with SDA High 
*/ 
{ 
    SCLw(1); 
    SDAw(0); 
    SCLw(0); 
} 
 
 
// Send stop sequence 
void send_stop( void ) 
{ 
    SCLw(0); 
    SDAw(0); 
    SCLw(1); 
    SDAw(1); /* Should leave with both lines high to indicate finish */ 
} 
 
// Check acknowledge 
int check_ack(void) 
{ 
    int theresult; 
    SDAt(1); 
    SCLw(1); 
    theresult=SDAr(); 
    SCLw(0); 
    SDAw(1); /* Set the output before it becomes active to eliminate spike */ 
    SDAt(0); 
    return theresult; 
} 
 
// Send one bit 
void send_bit(int x) 
{ 
    x = x & 1;  
    SDAw(x); 
    SCLw(1); 
    SCLw(0); 
} 
 
// Send an entire bit 
void send_byte(int byte) 
{ 
    int i; 
    for (i = 7; i >= 0; i--) 
    {  
      send_bit(byte >> i); 
    } 
} 
 
// Read a register from the video decoder 
int read_register( int sub_address ) 
{ 



    int id, input = 0; 
 
    send_start(); 
 
    // Write slave address for SAA7114H is 43H // 
    send_byte(0x42); 
 
    check_ack(); 
 
    // Send the subaddress // 
    send_byte(sub_address); 
 
    check_ack(); 
 
    re_start(); 
 
    // Read address // 
    send_byte(0x43); 
 
    check_ack(); 
     
    SDAt(1); 
    for( id=8 ; id>0 ; id=id-1 ) 
    {   
        input=input<<1; 
        SCLw(1); 
        input=input|SDAr(); 
        SCLw(0); 
    } 
    SDAw(1);   /* Set the output prior to enable to eliminate spike and make  
   compatible with Restart */ 
    SDAt(0); 
    SCLw(1); 
    SCLw(0); 
    send_stop(); 
    return input; 
} 
 
// Write a register into the video decoder 
void write_register(int sub_address, int data) 
{ 
    int i; 
    // Start conditions // 
    send_start(); 
 
    for (i = 0; i < 5; i++) 
     i2c_delay(); 
 
    // Write slave address for SAA7114H is 42H // 
    send_byte(0x42); 
    check_ack(); 
    send_byte(sub_address); 
    check_ack(); 
    send_byte(data); 
    check_ack(); 
    send_stop(); 
} 



 
 
void read_one_field() 
{ 
  int line; 
  int start, end; 
  int line_section; 
  Xuint32 current_level; 
 
  line = -1; 
 
  while (1) 
  { 
    line = line + 1; 
 
    // This variable indicates how much of // 
    // the current line has  been  already // 
    // written into the block RAMs         // 
    current_level = 0x0001; 
     
    for (line_section = 0; line_section < 4; line_section++) 
    { 
      // Wait for the current line to  be  1/4,  1/2,  3/4 // 
      // and full filled. The while below executes 4 times // 
      while (!(XIo_In32(0x01803FFC) & current_level)) 
      { 
 // If in the meantime we lose vertical // 
 // synchronism, then break             // 
 if (!XIo_In32(0x01802FFC)) 
   break; 
      } 
 
      if (current_level == 0x01) { 
 start = 0; 
 end = 160; 
      } 
      else if (current_level == 0x02) { 
 start = 160; 
 end = 320; 
      } 
      else if (current_level == 0x04) { 
 start = 320; 
 end = 480; 
      } 
      else if (current_level == 0x08) { 
 start = 480; 
 end = 640; 
      } 
       
      if (!XIo_In32(0x01802FFC)) 
 break; 
       
      write_video(start, end, line);       
      current_level = current_level << 1; 
       
      if (!XIo_In32(0x01802FFC)) 
 break; 



    } 
    if (!XIo_In32(0x01802FFC)) 
      break; 
  } 
} 
 
 
int main() 
{  
  int i; 
   
  print("Hello World!\r\n"); 
  microblaze_enable_icache(); 
 
  // Start the bus  protocol  by  sending // 
  // a stop handshaking (SDA=1 and SCL=1) // 
  send_stop(); 
  print("Configuring video decoder..."); 
 
  i = 0; 
 
  // Configure the video decoder SAA7114H // 
  while (registers[i] != 0xFF) { 
    write_register (registers[i], registers[i+1]); 
    i+=2; 
  } 
  print("Video decoder configured!\r\n"); 
 
  // Clear screen // 
  for (i = 0; i < H*W; i++) 
    XIo_Out8(VGA_START + i, 0); 
 
  // Wait for a little bit 
  for (i=0; i<10000;i++); 
 
  while (1) 
  { 
    // Wait for the vertical synchronism 
    while ((XIo_In32(0x01802FFC))); 
    while (!(XIo_In32(0x01802FFC))); 
 
    if (XIo_In32(0x018008FC)) 
    { 
      while ((XIo_In32(0x01802FFC))); 
      while (!(XIo_In32(0x01802FFC))); 
    } 
 
    read_one_field(); 
    track_object(); 
  } 
 
  print("Goodbye\r\n"); 
  return 0; 
} 
 
 
 



VGA.VHD – parts of this file were modified 
------------------------------------------------------------------------------
- 
-- 
-- VGA video generator 
-- 
-- Uses the vga_timing module to generate hsync etc. 
-- Massages the RAM address and requests cycles from the memory controller 
-- to generate video using one byte per pixel 
-- 
-- Cristian Soviani, Dennis Lim, and Stephen A. Edwards 
-- 
------------------------------------------------------------------------------
- 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
 
entity vga is 
  port ( 
    clk            : in std_logic; 
    pix_clk        : in std_logic; 
    rst            : in std_logic; 
    video_data     : in std_logic_vector(15 downto 0); 
    video_addr     : out std_logic_vector(19 downto 0); 
    video_req      : out std_logic; 
    VIDOUT_CLK     : out std_logic; 
    VIDOUT_RCR     : out std_logic_vector(9 downto 0); 
    VIDOUT_GY      : out std_logic_vector(9 downto 0); 
    VIDOUT_BCB     : out std_logic_vector(9 downto 0); 
    VIDOUT_BLANK_N : out std_logic; 
    VIDOUT_HSYNC_N : out std_logic; 
    VIDOUT_VSYNC_N : out std_logic); 
end vga; 
 
architecture Behavioral of vga is 
 
  -- Fast low-voltage TTL-level I/O pad with 12 mA drive 
   
  component OBUF_F_12 
    port ( 
      O : out STD_ULOGIC; 
      I : in STD_ULOGIC); 
  end component; 
 
  -- Basic edge-sensitive flip-flop 
   
  component FD 
    port ( 
      C : in std_logic; 
      D : in std_logic; 
      Q : out std_logic); 
  end component; 
 
  -- Force instances of FD into pads for speed 
   
  attribute iob : string; 



  attribute iob of FD : component is "true"; 
 
  component vga_timing 
    port ( 
      h_sync_delay         : out std_logic; 
      v_sync_delay         : out std_logic; 
      blank                : out std_logic; 
      vga_ram_read_address : out std_logic_vector (19 downto 0); 
      pixel_clock          : in std_logic; 
      reset                : in std_logic); 
  end component; 
 
  signal r                      : std_logic_vector (9 downto 0); 
  signal g                      : std_logic_vector (9 downto 0); 
  signal b                      : std_logic_vector (9 downto 0); 
  signal blank                  : std_logic; 
  signal hsync                  : std_logic; 
  signal vsync                  : std_logic; 
  signal vga_ram_read_address   : std_logic_vector(19 downto 0); 
  signal vreq                   : std_logic; 
  signal vreq_1                 : std_logic; 
  signal load_video_word        : std_logic; 
  signal vga_shreg              : std_logic_vector(15 downto 0); 
 
begin 
 
  st : vga_timing port map ( 
    pixel_clock => pix_clk, 
    reset => rst, 
    h_sync_delay => hsync, 
    v_sync_delay => vsync, 
    blank => blank, 
    vga_ram_read_address => vga_ram_read_address); 
 
  -- Video request is true when the RAM address is even 
   
  -- FIXME: This should be disabled during blanking to reduce memory traffic 
 
  vreq <= not vga_ram_read_address(0); 
 
  -- Generate load_video_word by delaying vreq two cycles 
   
  process (pix_clk) 
  begin 
    if pix_clk'event and pix_clk='1' then 
      vreq_1 <= vreq; 
      load_video_word <= vreq_1; 
    end if; 
  end process; 
 
  -- Generate video_req (to the RAM controller) by delaying vreq by 
  -- a cycle synchronized with the pixel clock 
   
  process (clk) 
  begin 
    if clk'event and clk='1' then 
      video_req <= pix_clk and vreq; 



    end if; 
  end process; 
 
  -- The video address is the upper 19 bits from the VGA timing generator 
  -- because we are using two pixels per word and the RAM address counts words 
 
  video_addr <= '0' & vga_ram_read_address(19 downto 1); 
 
  -- The video shift register: either load it from RAM or shift it up a byte 
   
  process (pix_clk) 
  begin 
    if pix_clk'event and pix_clk='1' then 
      if load_video_word = '1' then 
        vga_shreg <= video_data; 
      else 
        -- Shift the low byte of read video data into the high byte 
        vga_shreg <= vga_shreg(7 downto 0) & "00000000"; 
      end if; 
    end if; 
  end process; 
 
  -- Copy the upper byte of the video word to the color signals 
  -- Note that we use three bits for red and green and two for blue. 
 
  r(9 downto 2) <= vga_shreg (15 downto 8); 
  r(1 downto 0) <= "00"; 
  g(9 downto 2) <= vga_shreg (15 downto 8); 
  g(1 downto 0) <= "00"; 
  b(9 downto 2) <= vga_shreg (15 downto 8); 
  b(1 downto 0) <= "00"; 
   
 
  -- Video clock I/O pad to the DAC 
   
  vidclk : OBUF_F_12 port map ( 
    O => VIDOUT_clk, 
    I => pix_clk); 
 
  -- Control signals: hsync, vsync, and blank 
 
  hsync_ff : FD port map ( 
    C => pix_clk, 
    D => not hsync, 
    Q => VIDOUT_HSYNC_N ); 
 
  vsync_ff : FD port map ( 
    C => pix_clk, 
    D => not vsync, 
    Q => VIDOUT_VSYNC_N ); 
 
  blank_ff :  FD port map ( 
    C => pix_clk, 
    D => not blank, 
    Q => VIDOUT_BLANK_N ); 
 
  -- Three digital color signals 



   
  rgb_ff : for i in 0 to 9 generate 
     
    r_ff : FD port map ( 
      C => pix_clk, 
      D => r(i), 
      Q => VIDOUT_RCR(i) ); 
     
    g_ff : FD port map ( 
      C => pix_clk, 
      D => g(i), 
      Q => VIDOUT_GY(i) ); 
     
    b_ff : FD port map ( 
      C => pix_clk, 
      D => b(i), 
      Q => VIDOUT_BCB(i) ); 
     
  end generate; 
   
end Behavioral; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


