An ANTLR Grammar for Esterel
COMS W4115

Prof. Stephen A. Edwards
Fall 2003
Columbia University
Department of Computer Science

ANTLR

Esterel.g

EsterelParser.java

cl ass Est erel Parser
ext ends Parser:

file : expr EOF!;

cl ass Esterel Lexer
ext ends Lexer:;

ID : LETTER (LETTER
| DAT)* :

public cl ass

Est er el Par ser extends
antlr. LLkPar ser

| npl enent s

Est er el Par ser TokenTypes

{}

EsterellLexer.java

public class Esterel Lexer
extends antlr. Char Scanner
| npl enent s

Est er el Par ser TokenTypes,
TokenStream {}

ANTLR Lexer Specificat

Look like
class MyLexer extends Lexer;
options {

option = val ue
}
Tokenl : 'char’ ’'char’ ;
Token2 : ’'char’ ’'char’ ;
Token3 : "char’ ('char’)? ;

Tries to match all non-protected tokens at once.

ANTLR Parser Specificati

Look like
class MyParser extends Parser;
options {
option = val ue
}

rul el - Tokenl Token2

| Token3 rule2 ;
rul e2 - (Tokenl Token2)* ;
rule3 - rulel ;

Looks at the next k tokens when deciding which option to
consider next.

An ANTLR grammar for

Esterel: Language out of France. Programs look like

module ABRO:
input A, B, R;
output O;

loop
[await A || await B];
emit O

each R

end module

The Esterel LRM

Lexical aspects are classical:

 |dentifiers are sequences of letters, digits, and the
underline character , starting with a letter.

* Integers are as in any language, e.g., 123, and
floating-point numerical constants are as in C++ and
Java; the values 12.3, .123E2, and 1.23E1 are
constants of type double, while 12.3Ff, .123E2F, and
1.23E1T are constants of type float.

e Strings are written between double quotes, e.qg.,
""a string"', with doubled double quotes as in
'a double quote"'.

The Esterel LRM

e Keywords are reserved and cannot be used as
Identifiers. Many constructs are bracketed, like
“present ... end present’. For such
constructs, repeating the initial keyword is optional;
one can also write “present ... end".

e Simple comments start with % and end at end-of-line.
Multiple-line comments start with %{ and end with }% .

A Lexer for Esterel

Operators from the langauge reference manual:

HE -/ T <>, =5 = ()
[] ? 77 <= >= <> =

Main observation: none longer than two characters. Need
k = 2 to disambiguate, e.g., ? and ??.

class EsterellLexer extends Lexer;
options {

k = 2;
by

A Lexer for Esterel

Next, | wrote a rule for each punctuation character:

PERIOD : .7
POUND : H#
PLUS : +7
DASH : 7=-7
SLASH : VAR
STAR : R

PARALLEL - 11" ;

A Lexer for Esterel

|dentifiers are standard:

ID

] Z, I ,A,--,Z,)

a
a] Z, I ,A,--,Z,

¢
C’

I ,_, I ,O,--,g,)*

A Lexer for Esterel

String constants must be contained on a single line and
may contain double quotes, e.g.,

"This 1s a constant with ""'double quotes

ANTLR makes this easy. annotating characters with !
discards them from the token text:

StringConstant

> 7l
C=C7 1\
L (e ey
)*

A Lexer for Esterel

| got in trouble with the = operator, which inverts a
character class. Invert with respect to what?

Needed to change options:

options {
k = 2;
charVocabulary = *\37..°\3777;
exportVocab = Esterel;

}

A Lexer for Esterel

Another problem: ANTLR scanners check each
recognized token’s text against keywords by default.

A string such as ""abort'" would scan as a keyword!

options {
k = 2;
charVocabulary = *\3”..°\3777;
exportVocab = Esterel;
testLiterals = fTalse;

}

ID options { testLiterals = true; }
: (’a,--7z7 I 7A7--’Z7) /* o */ ;

Numbers Defined

From the LRM:

Integers are as in any language, e.g., 123, and
floating-point numerical constants are as in C++ and Java,
the values 12.3, .123E2, and 1.23E1 are constants of
type double, while 12_.3F, .123E2f, and 1.23E1T are

constants of type float.

Numbers

With k = 2, for each rule ANTLR generates a set of
characters that can appear first and a set that can appear
second. But it doesn’t consider the possible combinations.

| split numbers into Number and FractionalNumber to
avoid this problem: If the two rules were combined, the
lookahead set for Number would include a period (e.g.,
from “.1") followed by end-of-token e.g., from “1” by itself).

Example numbers: First Second
(1% . EOT
2 1

1$ 2 1

Number Rules

Number
© (707..797)+

(7.7 CO07..797)* (Exponent)?
C CTt|I’F) { $setType(FloatConst); }
| /7* empty */ { $setType(DoubleConst);
)

| /7* empty */ { $setType(lnteger); }

)

Number Rules Continued

FractionalNumber
- 7.7 (C07..797)+ (Exponent)?
C CP)1°F) { $setType(FloatConst); }
| /7* empty */ { $setType(DoubleConst);

)

protected
Exponent

- CeI’EY) C+717-")? (C07..797)+

Comments

From the LRM:

Simple comments start with % and end at end-of-line.
Multiple-line comments start with %{ and end with }%.

Comments
Conmment
- 7 0p
((C{) ="{

(// Prevent .* fromeating the whole file
options {greedy=fal se;}:

(
C’\r> ’\n’) ="\r" ’\n" { newine(); }
| "\r’ { newine(); }
| '\n’ { newine(); }
O)
)
)*
"1 08
| ((C’\n”))* ’\n” { newWine(); }

)
{ $set Type(Token. SKI P); }

A Parser for Esterel

Esterel’'s syntax started out using ; as a separator and
later allowed it to be a terminator.

The language reference manual doesn’t agree with what
the compiler accepts.

Grammar from the LRM

NonParallel:
AtomicStatement
Sequence

Sequence:
SequenceWithoutTerminator ; o

SequenceWithoutTerminator:
AtomicStatement ; AtomicStatement
SequenceWithoutTerminator ; AtomicStatement

AtomicStatement:
nothing
pause

Grammar from the LRM

But in fact, the compiler accepts

module TestSemicolonl:
nothing;

end module

module TestSemicolon?2:
nothing; nothing;

end module

module TestSemicolon3:
nothing; nothing

end module

Rule seems to be “one or more statements separated by
semicolons except for the last, which is optional.”

Grammar for Statement Sec

Obvious solution:

sequence
- atomicStatement

(SEMICOLON atomicStatement)™*
(SEMICOLON)?

warning: nondeterminism upon
==1:SEMICOLON

between alt 1 and exit branch of block

Which option do you take when there’s a semicolon?

Nondeterminism

sequence : atomicStatement
(SEMICOLON atomicStatement)™
(SEMICOLON)? ;

Is equivalent to

sequence : atomicStatement seql seq2 ;

seql : SEMICOLON atomicStatement seql
| /* nothing */ ;

seg2 : SEMICOLON
| /* nothing */ ;

Nondeterminism

sequence : atomicStatement seql seq2 ;
seql : SEMICOLON atomicStatement seql
| /* nothing */ ;
seqg2 : SEMICOLON
| /* nothing */ ;

How does it choose an alternative in seql?
First choice: next token is a semicolon.
Second choice: next token is one that may follow seql.

But this may also be a semicolon!

Nondeterminsm

Solution: tell ANTLR to be greedy and prefer the iteration
solution.

sequence
> atomicStatement
(options { greedy=true; }
- SEMICOLON! atomicStatement)*
(SEMICOLONI)?

Nondeterminism

Delays can be “A” “X A” “immediate A” or “[A and B].”

delay : expr bSigExpr
| bSi1gExpr
| "1mmediate' bSigExpr ;

bSigExpr : ID
| "[" signalExpression "]" ;

expr - ID | /* ... */

Which choice when next token is an ID?

Nondeterminism

delay : expr bSigExpr
| bSi1gEXxpr
| "1mmediate' bSigExpr ;

What do we really want here?

If the delay is of the form “expr bSigExpr,” parse it that way.

Otherwise try the others.

Nondeterminism

Q
@D
Q
<
3
Q

delay : ((expr bSigExpr) =>
| bSi1gExpr
| "1mmediate' bSigExpr
)

delayPailr : expr bSigExpr ;

The => operator means “try to parse this first. If it works,
choose this alternative.”

Greedy Rules

The author of ANTLR writes

| have yet to see a case when building a parser
grammar where | did not want a subrule to match
as much input as possible.

However, it is particularly useful in scanners:

COMMENT
- % (_)* ek g

This doesn’t work like you'd expect...

Turning Off Greedy Rules

The right way is to disable greedy:

COMMENT
Y Aok
(options {greedy=false;} :.)*
n*/n ;

This only works if you have two characters of lookahead:

class L extends Lexer;
options {

k=2:
}

CMT : "/*" (options {greedy=false;} :-.)* "*/" ;

The Dangling Else Proble

class MyGram extends Parser;

stmt :© "iIf" expr 'then" stmt (Yelse' stmt)? ;
Gives

ANTLR Parser Generator Version 2.7.1
gram.g:3: warning: nondeterminism upon
gram.g:3: ==1:"else"

gram.g:3: between alts 1 and 2 of block

Generated Code

stmt : "iIT" expr "then" stmt (“else' stmt)? ;

match(LITERAL 1T);

exprQ);

match(LITERAL then);

stmt();

1T ((LA(D)==LITERAL else)) {
match(LITERAL else); /*Close binding else */
stmt();

} else 1T ((LA(D)==LITERAL _else)) {
/* go on: else can follow a stmt */

} else {

throw new SyntaxError(LT(1));

}

Removing the Warnin

class MyGram extends Parser;

stmt
"1 expr "then" stmt
(options {greedy=true;} :""else' stmt)~?

A Simpler Language

class MyGram
extends Parser;

stmt
> "1 expr
"then" stmt
('else" stmt)?
llfi e

mat ch(LI TERAL i f);
expr();
mat ch(LI TERAL t hen);
stnt () ;
switch (LA(1)) {
case LI TERAL el se:
mat ch(LI TERAL el se);
stnt () ;
br eak;
case LITERAL fi:
br eak;
def aul t:
t hr ow new SyntaxError (LT(1));

}
mat ch(LI TERAL fi);

