Review for the Final **COMS W4115** Prof. Stephen A. Edwards Spring 2003 Columbia University Department of Computer Science #### The Final Like the Midterm: 70 minutes 4–5 problems Closed book One sheet of notes of your own devising Comprehensive: Anything discussed in class is fair game Little, if any, programming. Details of ANTLR/C/Java/Prolog/ML syntax not required Broad knowledge of languages discussed # Topics (1) Structure of a Compiler Scanning and Parsing Regular Expressions **Context-Free Grammars** **Top-down Parsing** Bottom-up Parsing **ASTs** Name, Scope, and Bindings Types Control-flow constructs ## Topics (2) **Code Generation** Logic Programming: Prolog Concurrency: Locks and deadlocks Functional Programming: ML and the Lambda Calculus Scripting Languages ## Compiling a Simple Program ``` int gcd(int a, int b) { while (a != b) { if (a > b) a -= b; else b -= a; } return a; } ``` ## What the Compiler Sees ``` int gcd(int a, int b) while (a != b) { if (a > b) a -= b; else b -= a; return a; n tsp g c d (i n tsp a , sp i n tsp b) nl { nl sp sp w h i l e sp (asp ! = sp b) sp { nl sp sp sp i} f sp (asp > sp b) sp asp - ; nl sp sp sp e l s e sp b sp - = sp a ; nl sp sp } nl sp sp r e t u a ; nl } nl ``` Text file is a sequence of characters ## **Lexical Analysis Gives Tokens** ``` int gcd(int a, int b) while (a != b) { if (a > b) a -= b; else b -= a; return a; while int int int gcd a b b != a else b return ``` A stream of tokens. Whitespace, comments removed. ## **Parsing Gives an AST** Abstract syntax tree built from parsing rules. # Semantic Analysis Resolves Symbols Types checked; references to symbols resolved #### **Translation into 3-Address Code** ``` L0: sne $1, a, b seq $0, $1, 0 btrue $0, L1 % while (a != b) sl $3, b, a seq $2, $3, 0 btrue $2, L4 % if (a < b) sub a, a, b % a -= b int gcd(int a, int b) jmp L5 while (a != b) { L4: sub b, b, a % b -= a if (a > b) a -= b; else b -= a; L5: jmp L0 return a; L1: ret a ``` Idealized assembly language w/ infinite registers ## **Generation of 80386 Assembly** ``` % Save frame pointer gcd: pushl %ebp movl %esp, %ebp movl 8(%ebp), %eax % Load a from stack movl 12(%ebp),%edx % Load b from stack .L8: cmpl %edx,%eax % while (a != b) je .L3 % if (a < b) jle .L5 % a -= b subl %edx,%eax jmp .L8 % b = a subl %eax,%edx .L5: jmp .L8 % Restore SP, BP leave .L3: ret ``` # **Scanning and Automata** #### **Deterministic Finite Automata** A state machine with an initial state Arcs indicate "consumed" input symbols. States with double lines are accepting. If the next token has an arc, follow the arc. If the next token has no arc and the state is accepting, return the token. If the next token has no arc and the state is not accepting, syntax error. #### **Deterministic Finite Automata** ``` ELSE: "else"; ELSEIF: "elseif" ; ``` #### **Deterministic Finite Automata** ``` IF: "if" ; ID: 'a'..'z' ('a'..'z' | '0'..'9')*; NUM: ('0'...'9')+; a.eg.≥0.9 a-z0-9 a-hj-z a-z0-9 a-z90-9 0-9 NUM NUM 0-9 ``` #### **Nondeterminstic Finite Automata** DFAs with ϵ arcs. Conceptually, ϵ arcs denote state equivalence. ϵ arcs add the ability to make nondeterministic (schizophrenic) choices. When an NFA reaches a state with an ϵ arc, it moves into every destination. NFAs can be in multiple states at once. # **Translating REs into NFAs** #### **RE to NFAs** Building an NFA for the regular expression $$(wo|\epsilon)m(a|e)n$$ produces after simplification. Most ϵ arcs disappear. #### **Subset Construction** How to compute a DFA from an NFA. Basic idea: each state of the DFA is a *marking* of the NFA #### **Subset Construction** An DFA can be exponentially larger than the corresponding NFA. n states versus 2^n Tools often try to strike a balance between the two representations. ANTLR uses a different technique. # **Grammars and Parsing** ## **Ambiguous Grammars** A grammar can easily be ambiguous. Consider parsing $$3 - 4 * 2 + 5$$ with the grammar $$e \rightarrow e + e \mid e - e \mid e * e \mid e / e$$ ## Fixing Ambiguous Grammars Original ANTLR grammar specification ``` expr : expr '+' expr | expr '-' expr | expr '*' expr | expr '/' expr | NUMBER ; ``` Ambiguous: no precedence or associativity. ## **Assigning Precedence Levels** Split into multiple rules, one per level ``` expr : expr '+' expr expr '-' expr term ; term : term '*' term term '/' term atom ; atom: NUMBER; ``` Still ambiguous: associativity not defined ## **Assigning Associativity** Make one side or the other the next level of precedence ## A Top-Down Parser ``` stmt: 'if' expr 'then' expr 'while' expr 'do' expr expr ':=' expr ; expr : NUMBER | '(' expr ')'; AST stmt() { switch (next-token) { case "if": match("if"); expr(); match("then"); expr(); case "while": match("while"); expr(); match("do"); expr(); case NUMBER or "(": expr(); match(":="); expr(); ``` ## Writing LL(k) Grammars Cannot have left-recursion ``` expr : expr '+' term | term ; becomes AST expr() - switch (next-token) - case NUMBER : expr(); /* Infinite Recursion */ ``` ## Writing LL(1) Grammars Cannot have common prefixes ``` expr : ID '(' expr ')' | ID '=' expr ``` becomes ``` AST expr() – switch (next-token) – case ID: match(ID); match('('); expr(); match(')'); case ID: match(ID); match('='); expr(); ``` ## **Eliminating Common Prefixes** Consolidate common prefixes: ``` expr : expr '+' term expr '-' term term becomes expr : expr ('+' term | '-' term) term ``` ## **Eliminating Left Recursion** Understand the recursion and add tail rules ``` expr : expr ('+' term | '-' term) term becomes expr : term exprt ; exprt : '+' term exprt '-' term exprt /* nothing */ ``` # **Bottom-up Parsing** ## **Rightmost Derivation** $$1: e \rightarrow t + e$$ $$2: e \rightarrow t$$ $$3: t \rightarrow \mathbf{Id} * t$$ $$4: t \rightarrow \mathsf{Id}$$ A rightmost derivation for $\mathbf{Id} * \mathbf{Id} + \mathbf{Id}$: $$t + e$$ $$t + t$$ $$t + \mathsf{Id}$$ $$\mathsf{Id} * t + \mathsf{Id}$$ $$Id * Id + Id$$ Basic idea of bottom-up parsing: construct this rightmost derivation backward. #### Handles This is a reverse rightmost derivation for $\mathbf{Id} * \mathbf{Id} + \mathbf{Id}$. Each highlighted section is a handle. Taken in order, the handles build the tree from the leaves to the root. ## **Shift-reduce Parsing** Scan input left-to-right, looking for handles. An oracle tells what to do- ## **LR Parsing** $$1: e \rightarrow t + e$$ $$2: e \rightarrow t$$ $$3: t \rightarrow \mathbf{Id} * t$$ $$4: t \rightarrow \mathsf{Id}$$ | action | goto | |--------|------| | | J | | | Id + * \$ | e | t | |---|---------------|---|---| | 0 | s1 | 7 | 2 | | 1 | r4 r4 s3 r4 | | | | 2 | r2 s4 r2 r2 | | | | 3 | s1 | | 5 | | 4 | s1 | 6 | 2 | | 5 | r3 r3 r3 r3 | | | | 6 | r1 r1 r1 r1 | | | | 7 | acc | | | - 1. Look at state on top of stack - 2. And the next input token - 3. to find the next action - 4. In this case, shift the token onto the stack and go to state 1. ## **LR Parsing** $1 \cdot \rho \longrightarrow t \perp \rho$ | 1: | $e \rightarrow \iota \uparrow$ | - <i>e</i> | | | 5 | |----|--------------------------------|------------|---|------|----------------| | 2: | $e{ ightarrow}t$ | | | | 0 | | 3: | $t{ ightarrow}{ m Id}$ | *t | | | | | 4: | $t{ ightarrow}{\sf Id}$ | | | | | | | action | 1 | Q | joto | | | | Id + * | \$ | e | t | | | 0 | s1 | | 7 | 2 | Actio | | 1 | r4 r4 s3 | r4 | | | ld). T | | 2 | r2 s4 r2 | r2 | | | the s | | 3 | s1 | | | 5 | goto | | 4 | s1 | | 6 | 2 | to sta | | 5 | r3 r3 r3 | r3 | | | | | 6 | r1 r1 r1 | r1 | | | 8 | acc Action is reduce with rule 4 ($t \rightarrow Id$). The right side is removed from the stack to reveal state 3. The goto table in state 3 tells us to go to state 5 when we reduce a t: stack input action $\begin{bmatrix} t \\ 1 \end{bmatrix} \begin{bmatrix} t \\ 5 \end{bmatrix}$ + Id \$ ## **LR Parsing** | 1: | $e \rightarrow t + e$ | | | stack | input | action | |--------|-------------------------------|----|---------------|--|----------------------------|---------------| | 2: | $e{ ightarrow}t$ | | | 0 | Id * Id + Id \$ | shift, goto 1 | | 3: | $t \rightarrow \text{Id} * t$ | | | | * Id + Id \$ | shift, goto 3 | | 4: | $t{ ightarrow}{ m Id}$ | | | | ld + ld \$ | shift, goto 1 | | | action | go | Ī | | + Id \$ | reduce w/ 4 | | 0 | Id + * \$ | | $\frac{t}{2}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | + Id \$ | reduce w/3 | | 1 | r4 r4 s3 r4 | ' | _ | | + Id \$ | shift, goto 4 | | 2 | r2 s4 r2 r2 | | | $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 4 \end{bmatrix}$ | ld \$ | shift, goto 1 | | 3 | s1 | | 5 | | \$ | reduce w/ 4 | | 4 | s1 | 6 | 2 | | \$ | reduce w/ 2 | | 5 | r3 r3 r3 r3 | | | 0 2 4 2
0 t + e
0 2 4 6 | \$ | reduce w/ 1 | | 6
7 | r1 r1 r1 acc | | | 0 2 4 6
0 7 | \$ | accept | #### Constructing the SLR Parse Table The states are places we could be in a reverse-rightmost derivation. Let's represent such a place with a dot. - $1: e \rightarrow t + e$ - $2: e \rightarrow t$ - $3: t \rightarrow \mathbf{Id} * t$ - $4: t \rightarrow \mathsf{Id}$ Say we were at the beginning $(\cdot e)$. This corresponds to $$e' \rightarrow \cdot e$$ $$e \rightarrow \cdot t + e$$ $$e \rightarrow \cdot t$$ $$t \rightarrow \cdot \mathbf{Id} * t$$ $$t \rightarrow \cdot \mathsf{Id}$$ The first is a placeholder. The second are the two possibilities when we're just before e. The last two are the two possibilities when we're just before t. ## Constructing the SLR Parsing Table ## Names, Objects, and Bindings #### Names, Objects, and Bindings #### **Activation Records** #### **Activation Records** ``` Return Address Frame Pointer X A's variables Return Address Frame Pointer У B's variables Return Address Frame Pointer Ζ C's variables ``` ``` int A() { int x; B(); int B() { int y; C(); int C() { int z; ``` #### **Nested Subroutines in Pascal** ``` procedure A; procedure B; procedure C; begin .. end procedure D; begin C end begin D end procedure E; begin B end begin E end ``` ## **Symbol Tables in Tiger** #### Shallow vs. Deep binding ``` typedef int (*ifunc)(); ifunc foo() { int a = 1; int bar() { return a; } static dynamic return bar; shallow int main() { deep ifunc f = foo(); int a = 2; return (*f)(); ``` ## Shallow vs. Deep binding ``` void a(int i, void (*p)()) { main() a(1,q) void b() { printf("%d", i); } i = 1, p = q if (i=1) a(2,b) else (*p)(); b reference a(2,b) i = 2, p = b void q() {} b static int main() { shallow a(1,q); deep ``` Modern processors have byte-addressable memory. 0 2 3 4 Many data types (integers, addresses, floating-point numbers) are wider than a byte. 16-bit integer: 32-bit integer: 3 Modern memory systems read data in 32-, 64-, or 128-bit chunks: | 3 | 2 | 1 | 0 | |----|----|---|---| | 7 | 6 | 5 | 4 | | 11 | 10 | 9 | 8 | Reading an aligned 32-bit value is fast: a single operation. | 3 | 2 | 1 | 0 | |----|----|---|---| | 7 | 6 | 5 | 4 | | 11 | 10 | 9 | 8 | Slower to read an unaligned value: two reads plus shift. SPARC prohibits unaligned accesses. MIPS has special unaligned load/store instructions. x86, 68k run more slowly with unaligned accesses. Most languages "pad" the layout of records to ensure alignment restrictions. ``` struct padded { int x; /* 4 bytes */ char z; /* 1 byte */ short y; /* 2 bytes */ char w; /* 1 byte */ }; ``` : Added padding ## **Allocating Fixed-Size Arrays** Local arrays with fixed size are easy to stack. ``` return address \leftarrow \mathsf{FP} void foo() a b[0] int a; int b[10]; int c; b[9] ← FP + 12 ``` ## **Allocating Variable-Sized Arrays** ``` As always: add a level of indirection void foo(int n) { int a; int b[n]; int c; } ``` Variables remain constant offset from frame pointer. ## **Static Semantic Analysis** #### **Static Semantic Analysis** Lexical analysis: Make sure tokens are valid Syntactic analysis: Makes sure tokens appear in correct order Semantic analysis: Makes sure program is consistent ## **Static Semantic Analysis** Basic paradigm: recursively check AST nodes. 1 + break 1 - 5 $$\uparrow$$ 1 break 1 5 check(+) check(-) check(1) = int check(break) = void check(5) = int FAIL: int \neq void Types match, return int Ask yourself: at a particular node type, what must be true? #### **Mid-test Loops** ``` while true do begin readln(line); if all_blanks(line) then goto 100; consume_line(line); end; 100: LOOP line := ReadLine; WHEN AllBlanks(line) EXIT; ConsumeLine(line) END; ``` ## Implementing multi-way branches ``` switch (s) { case 1: one(); break; case 2: two(); break; case 3: three(); break; case 4: four(); break; Obvious way: if (s == 1) { one(); } else if (s == 2) { two(); } else if (s == 3) { three(); } else if (s == 4) { four(); } Reasonable, but we can sometimes do better. ``` #### Implementing multi-way branches If the cases are *dense*, a branch table is more efficient: ``` switch (s) { case 1: one(); break; case 2: two(); break; case 3: three(); break; case 4: four(); break; labels 1[] = { L1, L2, L3, L4 }; /* Array of labels */ if (s>=1 \&\& s<=4) goto l[s-1]; /* not legal C */ L1: one(); goto Break; L2: two(); goto Break; L3: three(); goto Break; L4: four(); goto Break; Break: ``` # **Applicative- and Normal-Order Evaluation** ``` int p(int i) { printf("%d ", i); return i; } void q(int a, int b, int c) int total = a; printf("%d ", b); total += c; What is printed by q(p(1), 2, p(3)); ``` # **Applicative- and Normal-Order Evaluation** ``` int p(int i) { printf("%d ", i); return i; } void q(int a, int b, int c) { int total = a; printf("%d ", b); total += c; } q(p(1), 2, p(3)); ``` Applicative: arguments evaluated before function is called. Result: 132 Normal: arguments evaluated when used. Result: 123 ## **Applicative- vs. and Normal-Order** Most languages use applicative order. Macro-like languages often use normal order. ``` #define p(x) (printf("%d ",x), x) #define q(a,b,c) total = (a), \ printf("%d ", (b)), \ total += (c) q(p(1), 2, p(3)); Prints 1 2 3. ``` Some functional languages also use normal order evaluation to avoid doing work. "Lazy Evaluation" #### Nondeterminism Nondeterminism is not the same as random: Compiler usually chooses an order when generating code. Optimization, exact expressions, or run-time values may affect behavior. Bottom line: don't know what code will do, but often know set of possibilities. ``` int p(int i) { printf("%d ", i); return i; } int q(int a, int b, int c) {} q(p(1), p(2), p(3)); Will not print 5 6 7. It will print one of 1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1 ``` # **Prolog** #### **Prolog** ``` All Caltech graduates are nerds. nerd(X):- techer(X). Stephen is a Caltech graduate. techer(stephen). Is Stephen a nerd? ?- nerd(stephen). yes ``` #### **Structures and Functors** A structure consists of a functor followed by an open parenthesis, a list of comma-separated terms, and a close parenthesis: ``` "Functor" paren must follow immediately bin_tree(foo, bin_tree(bar, glarch)) What's a structure? Whatever you like. A predicate nerd(stephen) A relationship teaches(edwards, cs4115) A data structure bin(+, bin(-, 1, 3), 4) ``` #### Unification Part of the search procedure that matches patterns. The search attempts to match a goal with a rule in the database by unifying them. #### Recursive rules: - A constant only unifies with itself - Two structures unify if they have the same functor, the same number of arguments, and the corresponding arguments unify - A variable unifies with anything but forces an equivalence #### **Unification Examples** The = operator checks whether two structures unify: ``` ?- a = a. % Constant unifi es with itself yes | ?- a = b. % Mismatched constants no ?-5.3 = a. % Mismatched constants ?-5.3 = X. X = 5.3?; % Variables unify no ?- foo(a,X) = foo(X,b). % X=a required, but inconsistent no ?- foo(a,X) = foo(X,a). % X=a is consistent X = a?; no ?- foo(X,b) = foo(a,Y). X = a % X=a. then b=Y Y = b?; no ?- foo(X,a,X) = foo(b,a,c). % X=b required, but inconsistent no ``` ## The Searching Algorithm ``` search(goal g, variables e) for each clause h: -t_1, \ldots, t_n in the database e = unify(g, h, e) if successful, for each term t_1, \ldots, t_n, e = \operatorname{search}(t_k, e) if all successful, return e return no ``` #### Order can cause Infinite Recursion ``` edge(a, b). edge(b, c). Goal edge(c, d). edge(d, e). path(a,a) edge(b, e). edge(d, f). path(a,a)=path(X,Y) \leftarrow Unify path(X, Y) :- X=a Y=a ← implies path(X, Z), edge(Z, Y). Subgoal path(X, X). path(a,Z) edge(Z,a) Consider the query path(a,Z)=path(X,Y) ?- path(a, a). X=a Y=Z path(a,Z) edge(Z,a) path(a,Z)=path(X,Y) Like LL(k) grammars. X=a Y=Z ``` ## Concurrency #### Coroutines ``` char c; parse() { void scan() { char buf[10]; c = 's'; transfer scan; transfer parse; -----buf[0] = c; c = 'a'; ← transfer scan; transfer parse; -----buf[1] = c; c = 'e'; ← transfer scan; transfer parse; ———— buf[2] = c; ``` ## **Cooperative Multitasking** ``` Typical MacOS < 10 or Windows < 95 program: void main() { Magical Event e; while ((e = get_next_event()) != QUIT) { switch (e) { case CLICK: /* ... */ break; case DRAG: /* ... */ break; case DOUBLECLICK: /* ... */ break; case KEYDOWN: /* ... */ break; /* ... */ ``` ## Multiprogramming Avoids I/O busy waiting. Context switch on I/O request. I/O completion triggers interrupt. Interrupt causes context switch. ### Three Threads on a Uniprocessor #### Races In a concurrent world, always assume something else is accessing your objects. Other threads are your adversary Consider what can happen when two threads are simultaneously reading and writing. Thread 1 Thread 2 f1 = a.field1 a.field1 = 1 f2 = a.field2 = a.field2 = 2 #### Thread 1 sees old values Thread 1 runs before Thread 2 #### Thread 1 sees new values Thread 1 runs after Thread 2 #### Thread 1 sees inconsistent values Execution of Thread 1 interrupts execution of Thread 2 ## Synchronized Methods Object's lock acquired when a **synchronized** method is invoked. Lock released when method terminates. ## Java's Solution: wait() and notify() wait() is like yield(), but a waiting thread can only be reawakened by another thread. ``` Always in a loop; could be awakened /before condition is true while (!condition()) wait(); ``` Thread that might affect the condition calls notify() to resume the thread. Programmer's responsible for ensuring each wait() has a matching notify(). ## wait() and notify() Each object maintains a set of threads that are waiting for its lock (its wait set). ## wait() and notify() Thread 1 acquires lock on obj Thread 1 calls wait() on obj Thread 1 releases lock on obj and adds itself to object's wait set. Thread 2 calls notify() on obj (must have acquired lock) Thread 1 is reawakened; it was in obj's wait set Thread 1 reacquires lock on obj Thread 1 continues from the wait() ## wait() and notify() Confusing enough? notify() nondeterministically chooses one thread to reawaken (many may wait on the same object). So what happens where there's more than one? notifyAll() enables all waiting threads. Much safer. ## **Building a Blocking Buffer** ``` class OnePlace { El value; public synchronized void write(El e) { .. } public synchronized El read() { .. } } ``` Only one thread may read or write the buffer at any time Thread will block on read if no data is available Thread will block on write if data has not been read ## **Building a Blocking Buffer** ``` synchronized void write(El e) throws InterruptedException { while (value != null) wait(); // Block while full value = e; notifyAll(); // Awaken any waiting read public synchronized El read() throws InterruptedException { while (value == null) wait(); // Block while empty El e = value; value = null; notifyAll(); // Awaken any waiting write return e; ``` ## **Functional Programming** # Simple functional programming in ML A function that squares numbers: ``` % sml Standard ML of New Jersey, Version 110.0.7 - fun square x = x * x; val square = fn : int -> int - square 5; val it = 25 : int - ``` ### Currying Functions are first-class objects that can be manipulated with abandon and treated just like numbers. ``` - fun max a b = if a > b then a else b; val max = fn : int -> int - val max5 = max 5; val max5 = fn : int -> int - max5 4; val it = 5 : int - max5 6; val it = 6 : int ``` #### Recursion ML doesn't have variables in the traditional sense, so you can't write programs with loops. So use recursion: ``` - fun sum n = = if n = 0 then 0 else sum(n-1) + n; val sum = fn : int -> int - sum 2; val it = 3 : int - sum 3; val it = 6 : int - sum 4; val it = 10 : int ``` #### More recursive fun ``` - fun map (f, 1) = = if null l then nil = else f (hd l) :: map(f, tl l); val map = fn : ('a -> 'b) * 'a list -> 'b list - fun add5 x = x + 5; val add5 = fn : int -> int - map(add5, [10,11,12]); val it = [15,16,17] : int list ``` #### Reduce Another popular functional language construct: ### But why always name functions? ``` - map(fn x => x + 5, [10,11,12]); val it = [15,16,17] : int list ``` This is called a *lambda* expression: it's simply an unnamed function. The **fun** operator is similar to a lambda expression: ``` - val add5 = fn x => x + 5; val add5 = fn : int -> int - add5 10; val it = 15 : int ``` ## **Pattern Matching** Functions are often defined over ranges $$f(x) = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{otherwise.} \end{cases}$$ Functions in ML are no different. How to cleverly avoid writing if-then: Pattern matching is order-sensitive. This gives an error. ### **Pattern Matching** More fancy binding h:: t matchs a list, binding h to the head and t to the tail. #### The Lambda Calculus #### The Lambda Calculus Fancy name for rules about how to represent and evaluate expressions with unnamed functions. Theoretical underpinning of functional languages. Side-effect free. Very different from the Turing model of a store with evolving state. ML: The Lambda Calculus: fn x => 2 * x; $\lambda x. * 2 x$ English: "the function of x that returns the product of two and x" ## **Evaluating Lambda Expressions** Pure lambda calculus has no built-in functions; we'll be impure. To evaluate (+ (* 5 6) (* 8 3)), we can't start with + because it only operates on numbers. There are two *reducible expressions*: (*56) and (*83). We can reduce either one first. For example: Looks like deriving a sentence from a grammar. ## **Evaluating Lambda Expressions** We need a reduction rule to handle λ s: $$(\lambda x. * 2 x) 4$$ $$(* 2 4)$$ $$8$$ This is called β -reduction. The formal parameter may be used several times: ``` (\lambda x. + x x) 4 (+ 4 4) 8 ``` #### **Reduction Order** The order in which you reduce things can matter. $$(\lambda x.\lambda y.y) ((\lambda z.z z) (\lambda z.z z))$$ We could choose to reduce one of two things, either $$(\lambda z.z \ z) \ (\lambda z.z \ z)$$ or the whole thing $$(\lambda x.\lambda y.y) ((\lambda z.z z) (\lambda z.z z))$$ #### **Reduction Order** Reducing $(\lambda z.z \ z) \ (\lambda z.z \ z)$ effectively does nothing because $(\lambda z.z \ z)$ is the function that calls its first argument on its first argument. The expression reduces to itself: $$(\lambda z.z \ z) \ (\lambda z.z \ z)$$ So always reducing it does not terminate. However, reducing the outermost function does terminate because it ignores its (nasty) argument: $$(\lambda x.\lambda y.y) ((\lambda z.z z) (\lambda z.z z))$$ $\lambda y.y$ #### **Reduction Order** The *redex* is a sub-expression that can be reduced. The *leftmost* redex is the one whose λ is to the left of all other redexes. You can guess which is the *rightmost*. The *outermost* redex is not contained in any other. The innermost redex does not contain any other. For $$(\lambda x.\lambda y.y)$$ $((\lambda z.z\ z)\ (\lambda z.z\ z)$), $(\lambda z.z\ z)$ $(\lambda z.z\ z)$ is the leftmost innermost and $(\lambda x.\lambda y.y)$ $((\lambda z.z\ z)\ (\lambda z.z\ z)$ is the leftmost outermost. ## **Applicative vs. Normal Order** Applicative order reduction: Always reduce the leftmost innermost redex. Normative order reduction: Always reduce the leftmost outermost redex. For $(\lambda x.\lambda y.y)$ $((\lambda z.z z) (\lambda z.z z))$, applicative order reduction never terminated but normative order did. ## **Applicative vs. Normal Order** Applicative: reduce leftmost innermost "evaluate arguments before the function itself" eager evaluation, call-by-value, usually more efficient Normative: reduce leftmost outermost "evaluate the function before its arguments" lazy evaluation, call-by-name, more costly to implement, accepts a larger class of programs #### **Normal Form** A lambda expression that cannot be reduced further is in *normal form*. Thus, $$\lambda y.y$$ is the normal form of $$(\lambda x.\lambda y.y) ((\lambda z.z z) (\lambda z.z z))$$ #### **Normal Form** Not everything has a normal form $$(\lambda z.z \ z) \ (\lambda z.z \ z)$$ can only be reduced to itself, so it never produces an non-reducible expression. "Infinite loop." #### The Church-Rosser Theorems If $E_1 \leftrightarrow E_2$ (are interconvertable), then there exists an E such that $E_1 \to E$ and $E_2 \to E$. "Reduction in any way can eventually produce the same result." If $E_1 \to E_2$, and E_2 is is normal form, then there is a normal-order reduction of E_1 to E_2 . "Normal-order reduction will always produce a normal form, if one exists." #### Church-Rosser #### Amazing result: Any way you choose to evaluate a lambda expression will produce the same result. Each program means exactly one thing: its normal form. The lambda calculus is deterministic w.r.t. the final result. Normal order reduction is the most general.