Language Design
COMS w4115

Prof. Stephen A. Edwards
Spring 2003
Columbia University
Department of Computer Science

Lexical Conventions

Identifiers (words, e.g., foo, printf)

Sequence of letters, digits, and underscores, starting with
a letter or underscore

Keywords (special words, e.g., if, return)

C has fairly few: only 23 keywords. Deliberate: leaves
more room for users’ names

Comments (between /* and */)

Most fall into two basic styles: start/end sequences as in
C, or until end-of-line as in Java’s / /

What's in a Name?

In C, each name has a storage class (where it is) and a
type (what it is).

Storage classes: Fundamental types: Derived types:

1. automatic 1. char 1. arrays

2. static 2. int 2. functions
3. external 3. float 3. pointers
4. register 4. double 4. structures

Language Design Issues

Syntax: how programs look
* Names and reserved words
* Instruction formats
* Grouping
Semantics: what programs mean
* Model of computation: sequential, concurrent
* Control and data flow

* Types and data representation

Lexical Conventions

C is a free-form language where whitespace mostly
serves to separate tokens. Which of these are the same?

1+2 return this
1+ 2 returnthis
foo bar
foobar

Space is significant in some language. Python uses
indentation for grouping, thus these are different:
if x < 3: if x < 3:

y =2 2

z =3

n <
w 1

Objects and Ivalues

Object: area of memory
Ivalue: refers to an object

An Ivalue may appear on the left side of an assignment

a
3

3; /* OK: a is an lvalue */
a; /* 3 is not an lvalue */

The Design of C

Taken from Dennis Ritchie’s C Reference Manual

(Appendix A of Kernighan & Ritchie)

Constants/Literals

Integers (e.g., 10)

Should a leading - be part of an integer or not?
Characters (e.g., ’a”)

How do you represent non-printable or’ characters?
Floating-point numbers (e.g., 3.5e-10)

Usually fairly complex syntax, easy to get wrong.
Strings (e.g., ""Hello™)

How do you include a " in a string?

Conversions

C defines certain automatic conversions:

e A char can be used as an int

Floating-point arithmetic is always done with
doubles; floats are automatically promoted

int and char may be converted to float or double
and back. Result is undefined if it could overflow.

Adding an integer to a pointer gives a pointer

Subtracting two pointers to objects of the same type
produces an integer

Expressions

Expressions are built from identifiers (foo), constants (3),
parenthesis, and unary and binary operators.

Each operator has a precedence and an associativity

Precedence tells us

1*2 + 3 * 4 means
@*2)+ (@ =*4
Associativity tells us

1+2 + 3 + 4means
@+2)+3)+4

Storage-Class Specifiers

auto Automatic (stacked), default
static Statically allocated
extern Look for a declaration elsewhere

register Keptin a register, not memory

C trivia: Originally, a function could only have at most
three register variables, may only be int or char,
can't use address-of operator &.

Today, register simply ignored. Compilers try to put
most automatic variables in registers.

Declarator syntax

Is int *F() a pointer to a function returning an int, or a
function that returns a pointer to an int?

Hint: precedence rules for declarators match those for
expressions.

Parentheses resolve such ambiguities:

int *(f()) Function returning pointer to int
int (*f)() Pointer to function returning int

C’s Operators in Precedence Order

f(r,r,...) a[i] p->m s.m

LI9) 1 -1

++1 -1 1++ 1--
*p &l (type) r sizeof(t)
n * o n/ o 1% J

n+o n-o

1 <<] 1 >>]

n<o n>o n <= o n >= o
r == r r I=r

1 &]

I 4

i]

b && c

b]l c

b?r -r

I =r I +=n I -=n I *=n
1 /= n I %= i 1 &= i 1 =1
1]=1 I <<=1 |1 >>=1i
rl , r2

Type Specifiers

int

char

float

double

struct { declarations }

struct identifier { declarations }

struct identifier

Statements

expression ;

{ statement-list }

it (expression) statement else statement
while (expression) statement

do statement while (expression);

for (expression ; expression ; expression) statement
switch (expression) statement

case constant-expression :

defaul t:

break;

continue;

return expression ;

goto label ;

label :

Declarators
Declaration: string of specifiers followed by a declarator

basic type
static unsigned int (*f[10])(int, char*)[10];

specifiers declarator

Declarator’s notation matches that of an expression: use it
to return the basic type.

Largely regarded as the worst syntactic aspect of C: both
pre- (pointers) and post-fix operators (arrays, functions).

Declarators

identifier
(declarator) Grouping
declarator () Function

declarator [optional-constant] Array
* declarator Pointer

C trivia: Originally, number and type of arguments to a
function wasn't part of its type, thus declarator just
contained ().

Today, ANSI C allows function and argument types,
making an even bigger mess of declarators.

External Definitions

“A C program consists of a sequence of external
definitions”

Functions, simple variables, and arrays may be defined.

“An external definition declares an identifier to have
storage class extern and a specified type”

Function definitions

type-specifier declarator (parameter-list)
type-decl-list
{
declaration-list
statement-list
}
Example:

int max(a, b, ¢)
int a, b, c;

.
int m;
m=(C@>b) ?2a:b;
return m>c ?m: c ;
}

Scope Rules

Two types of scope in C:

1. Lexical scope

Essentially, place where you don't get “undeclared
identifier” errors

2. Scope of external identifiers

When two identifiers in different files refer to the same
object. E.g., a function defined in one file called from
another.

The Preprocessor

Violates the free-form nature of C: preprocessor lines
must begin with #.

Program text is passed through the preprocessor before
entering the compiler proper.

Define replacement text:
define identifier token-string
Replace a line with the contents of a file:

include " filename "

More C trivia

The first C compilers did not check the number and type
of function arguments.

The biggest change made when C was standardized was
to require the type of function arguments to be defined:
Old-style New-style

int fQ; int f(int, int, double);

int f(a, b, ©) i
int a, b; {
double c; }
{
3

Lexical Scope

Extends from declaration to terminating } or end-of-file.
int a;

int fooQ
{.
int b;
if (a==0) {
printf("’'A was 0");
a=1;
}
b =a; /7% OK */
3
int barQ
a=3; /* OK */
b = 2; /* Error: b out of scope */

}

C’s Standard Libraries

<assert.h> Generate runtime errors assert(a > 0)
<ctype. h> Character classes i sal pha(c)
<errno. h> System error numbers errno

<fl oat. h> Floating-point constants FLT_MAX
<limts.h> Integer constants I NT_MAX

<l ocal e. h> Internationalization setlocale(...)
<mat h. h> Math functions si n(x)

<setj nmp. h> Non-local goto setjmp(jb)

<signal . h> Signal handling
<stdarg. h> Variable-length arguments va_start(ap, st)

<stddef.h> Some standard types size.t

<stdi o. h> File 1/O, printing. printf("o%", i)
<stdlib. h> Miscellaneous functions mal | oc(1024)
<string.h> String manipulation strcnp(sl, s2)

<time.h> Time, date calculations localtime(tm

nt f(int a, int b, double c)

Data Definitions

type-specifier init-declarator-list ;
declarator optional-initializer

Initializers may be constants or brace-enclosed,
comma-separated constant expressions. Examples:

int a;
struct { int x; inty; Y} b={1, 2 };

float a, *b, c;

External Scope

signal (SI G NT, &f)

filel.c: file2.c:
int fooQ int bazQ)
return 0; foo(); /* Error */
b
int barQ extern int foo();
foo(); *OK* int baff(Q)

foo(); *OK*

Language design
Language design is library design.
— Bjarne Stroustroup

Programs consist of pieces connected together.

Big challenge in language design: making it easy to put
pieces together correctly. C examples:

* The function abstraction (local variables, etc.)
* Type checking of function arguments

e The #include directive

