The WPSM Language:
A simple language that transform simple data structure into
complex xML format

Wai Y. Wong wyw2101@columbia.edu
Peter Chen pc2106@columbia.edu
Seema Gupta sg807@columbia.edu
Miqdad Mohammed mm1723@columbia.edu

COMS W4115, Programming Language and Translators, Spring 2003
Instructor: Prof. Stephen Edwards

TA: Michael Locasto

May 13,2003

Table of contents:

1. Introduction WPSM
1.1. Introduction
1.2. Background
1.3. Motivation
1.4. Goals
1.5. Features
1.6. Sample
1.7. Summary

2. Reference Manual
2.1. Syntax notation
2.2. Lexical conventions
2.3. Expression
2.4. Declarations
2.5. Statements
2.6. Scope rules

3. Install WPSM
3.1. System requirement
3.2. Install WPSM code
3.3. Setup WPSM environment

4. Tutorial

5. Project Plan
5.1. Team responsibility
5.2. Development phases
5.3. Software development environment (SDE)
5.4. Project log

6. Architectural Design

6.1. WPSM system
Diagram A.
Diagram B.

6.2. Front-end subsystem
6.3. Back-end subsystem
6.4. WPSM library

7. Testing Plan
7.1. WPSM source file testing
7.2. WPSM syntax testing
7.3. WPSM dependencies testing
7.4. WPSM features testing
7.5. WPSM release control

Appendix A.

Appendix B.
Appendix C.

Appendix D.

1. Introducing WPSM

1.1. Introduction

The WPSM language and environment is designed to help a content manager
to transform a mass amount of records from a simple data file into a complex
XML file format. (See Appendix A) Through a few simple lines of WPSM
codes, the user will be able to manipulate the input data and generate a well-
formed and valid XML file containing that data. More importantly, the simple
WPSM syntax will also manage the complex XML syntax for the user. Using
WPSM language, the content manager will not have to worry about the
complex XML syntax, such as declaration and tags, at all.

The WPSM language supports Extensible Markup Language (XML) 1.0
(Second Edition) and is designed to be easy to learn, productive, robust,
portable, and Internet ready. The Java integration and WPSM Virtual
Machine allows the WPSM program to be created and executed in all
environments that Java supports.

1.2. Background

XML, Extensible Markup Language, is designed as a means of describing,
structuring, storing and sending information or data and is derived from
SGML, Standard Generalized Markup Language. It is introduced to make up
for the main limitation of HTML, which is the inability to create your own
markup.

XML provides a standard self-documented format to exchange information
among software components and therefore its documents can replace ASCII
files and formats like CSV, comma-separated values. Because XML is able to
encode information that is nested and in lists, its documents can replace
relational SQL-like encoding of data by providing a more "object-like"
encoding of data.

Today, in e-Business, XML is wildly used in supporting mass content
management. In the data warehouse, it eases the transferring of data between
two systems that have different schema structures. In the Business-to-
Business (B2B) model, it allows for the exchange of a large amount of data
between companies and organizations. For example, a company could
develop an application, based on XML specifications, to exchange financial
information.

1.3. Motivation

XML is a markup language for documents containing structured information.
This markup language is a mechanism to identify structures in a document.
The XML specification defines a standard way to add markup to documents.
Structured information contains both contents and some indications of what
role that the contents play. However, because of the standards and rules of
XML, it is relatively difficult for the users (e.g. content managers, who do not

know how to write program) to implement and maintain the XML code
correctly and efficiently.

Now, with WPSM, the users do not have to know about the XML rules and
syntax at all. They can create a well-formed and valid XML file in three steps.
(Here we use a CSV file format as an example) First, the user creates a CSV
file using a spreadsheet program, e.g. MS Excel. The users simply enter all
desired data in a spreadsheet, and they save the spreadsheet as a CSV file.
Secondly, the users write a few line of WPSM code and compile the code.
Now, the users’ job is almost done. The last step is to run the program the
WPSM just compiled. By running this WPSM compiled program, a well-
formed and valid XML file would be created automatically given the inputted
CSV file. This XML file is ready to be used for any purpose.

Users are not limited to map and translate from one simple data structure file
to an XML file. WPSM gives the users the flexibility and usability to
manipulate the content of data and strings and customize the generated XML
file to suit their purpose. With some simple WPSM syntax and techniques,
they would be able to output their desired contents and formats into an XML
file.

The simplicity of WPSM will allow a user new to programming to become a
skilled WPSM programmer. All that is necessary to master the language is to
breeze through the reference manual provided.

1.4. Goals
Ease of use

WPSM is designed for people who may never have done any programming in
their lives. The user will be able to begin coding WPSM as soon as they read
the WPSM reference. As opposed to most other programming languages, the
user does not have to understand complicated concepts, such as object-
oriented programming, data type structure, allocation and freeing of memory,
pointers, and memory address. All they need to understand is the simple
WPSM syntax and keywords.

Productivity

Use simple algorithms to manage mass amounts of data and manipulate
complex XML syntax. Writing few lines of WPSM codes, users can organize
and convert thousands of records from a data file in some simple format, such
as CSV, to a well-formed XML format. For example, with a small WPSM
program, the companies will be able to easily transform the whole system
records from one data schema into another. Furthermore, they can maintain
and manipulate the contents easily by simply modifying a bit of the WPSM
code whenever necessary.

Robust

Because WPSM’s syntax is so simple and is capable of generating a complex
output, reliability is of the utmost important. WPSM allows extensive
compile-time checking so bugs can be caught early. Ideally, as long as the
users compile their code successfully, users will not have to deal with run time
errors. This is why WPSM gives the users a robust and reliable environment.
It is one of our goals to make non-programmers become well-skilled WPSM
programmers.

Portable

A program written in WPSM can run in all environments, and is not limited to
any single environment. Since WPSM is implemented using Java, it is truly
portable. It is an architecture neutral language that supports a variety of
systems, CPUs, and operating systems. Since WPSM is compiled in JAVA
and generates JAVA, it is as portable.

Internet ability

Because WPSM is an architecture neutral language, the compiled code can run
in any web-based environment. This helps users working in different locations
around the world to be able to share and access the compiled code. For
example, a content manager in a New York warehouse can access the stocking
database in a California warehouse through the Internet.

1.5. Features
Filtering

WPSM allows a user to filter through a set of data using the functions
provided. A user could potentially open a file, and run through it line by line,
specifying which column is to be searched for what value. If the data includes
the specified value, the user will be able to state what the resulting action
should be (i.e. include the resulting data in the generated XML file).

Column manipulation

As an added benefit, the users can include/exclude columns in/from the
generated XML file. The user can create a new column to add to the data, and
decide upon a default value for every row in that column. Alternatively, the
user has the option of excluding a column from the resulting XML file, by
specifying the position in the input file to exclude.

XML tags (element, attribute) manipulation

One of the major features of this language is that it allows a user to indicate
the name of the different elements and tags. If, for example, a user is
compiling a list of books and all the attributes associated with those books,
they can set the name of the tags at each position. (Please see Sample Syntax
for example).

Data manipulation

WPSM allows a user to concatenate values of two different variables. For
example, they may want to concatenate the values of varl and var2 or varl
and columnl. These actions would result in varlvar2 and varlcolumnl.
(Please see Sample Syntax for example).

Arithmetic

WPSM provides the user with all the basic arithmetic operations. They will be
able to add, subtract, and multiply any number of variables and columns.

Error handling ability

If the compiled program generates an error when it is run, the user can specify,
within the code, the action to take once that error is seen. This will allow the
user to account for any foreseen errors, and allow the program to continue to
generate code despite the occurrence of invalid data.

1.6. Sample Syntax

Basic Syntax

START // Start of program
END // End of program
$[Integer] // Position of the record. $1, $2,..,5n
$[Letters] // WPSM data-type variable
IF (bool exprs) { // If statement
stmt list

}
ELSEIF (bool exprs) {

stmt list

}

ELSE {
stmt_ list

}

WHILE (bool exprs) { // While statement
stmtiiist

}

XML tags (element, attribute) manipulation

//WPSM code

SRN := “Book” // Sets the category (XML root element)
// name

$1 := “Title”;

$2 := “Author”;

$3 := “Publisher”;

$4 := “Price”;

$5 := “Date”;

//sample CSV data:
Computer Graphics, James D. Foley, Addison-Wesley, $69.95, 1996

//Would be converted to:
<Book Title = Computer Graphics Author = James D. Foley Publisher =
Addison-Wesley Price = $69.95 Year = 1996 />

Filtering

//'WPSM code

START;

$string := “Java”; //assign value to a variable

IF (§1 == $string)
; //then “skip stmt” don’t create the record in XML
END;

//sample CSV data:

Computer Graphics, James D. Foley, Addison-Wesley, $69.95, 1996
Thinking in Java, Bruce Eckel, Prentice Hall PTR, $49.99, 2002

//Only one record will be converted to:
<Book Title = Computer Graphics Author = James D. Foley Publisher =
Addison-Wesley Price = $69.95 Year = 1996 />

Data manipulation

$varl = “gold”
$var2 = “rush”
$var3 = $varl + $var2

//the resulting value of $var3 would be “goldrush”

$varl = “gold”
$var3 = $varl + $1

//the resulting value of $var3 would be “gold” concatenated with the value of
//position 1 of that line

1.7. Summary

WPSM is a powerful scripting language that allows the user to transform mass
amount of data records from one simple structure to the complex XML format.
It also provides the user with the ability to manipulate columns of data, strings,
and numbers in the creation of a well-formed and valid XML output. It
handles all XML rules, such as DTD, root element, element, and attribute. It
eliminates the Content Manager’s trouble in dealing with XML syntax while
managing large data files, and allows them to focus on their job (Content
Management).

2. Reference Manual
2.1. Syntax notation

Syntax notations are defined as they are introduced in this document.
Nonterminal symbols are indicated by italic type, and terminal symbol are
indicated by gothic type. The symbol followed by ° * * denotes the symbol
may be occur zero or more times. The symbol followed by © + * denotes the
symbol may occur one or more times. The symbol followed by ? * denotes
the symbol is optional, which may occur zero or one time. (sl |s2)

‘ denotes a choice between the symbol sequence s1 and the symbol s2.

2.2. Lexical conventions

There are several kinds of tokens used in WPSM: identifiers, keywords,
constants, strings, separators, and variables. In general blanks, tabs, new lines,
and comments are ignored except in the case where they serve to separate
tokens. Different adjacent identifiers, constants, and certain operator-pairs
must be separated by these characters.

2.2.1. Comments

One of the Java style comments is supported. The characters // introduce a
comment, which terminates with the new line. // has no special meaning
inside comment line.

2.2.2. Identifiers (names)

An identifier is a sequence of letters and digits; the first character must be
alphabetic. Upper and lower case letters are considered different.

Identifier = letter (letter | digit | © ")*
2.2.3. Keywords

The following identifiers are reserved for use as keywords, and may not be
used otherwise:

BEGIN
WHILE
READLINE
IF

ELSEIF
ELSE
PRINT
CREATRECORD
AND

OR

EOF

END

2.2.4. Constants

There are several kinds of constants, as follows:
2.2.4.1. integer constants

An integer constant is a sequence of digits.
integer = digit+

2.2.4.2. string constants

A string is a sequence of ACSII characters surrounded by double quote ”. A
string has the Java type string (see Java reference).

string = 7 character+ (character | digit)* “
2.2.5. Separators

The following ASCII characters are separators:

{
}

b

— e N

2.2.6. Variables

There are three types of variables introduced in this document. Regular
variables and attribute position variables must begin with * § © symbol,
otherwise an variable declaration error would be complained. The regular
variables must be initialized before they are being used.

2.2.6.1. Regular variables

The variable name must begin with * $ < symbol and followed by at least one
alphabetic, then any combination of alphabetic, integer number and /or
underscore ¢’ is optional.

letter: ‘a’..’z’ | ‘A’..°Z7;

int: (‘0°..9)+;
var: ‘$’ letter (letter | int | < ")*;

2.2.6.2. Attribute position variable

10

The attribute position variables must begin with * $ * and followed by at least
one or more digits (integer). This variable is bounded to the position of the
record attribute and has direct reference to the attribute value.

attr var: ‘$(0°..°9)+;

2.2.6.3. Built-in variables

The following identifiers are reserved for use as built-in variables, and may
not be used otherwise:

FN input file’s filename

OFN output file’s filename

FS field separator

RT XML root element

RN record name (XML element name)
RA record attribute (XML attribute name)
RV record value (XML value)
RV[integer] particular attribute value

Integer type:

RA SIZE returns the number of record attributes
RV _SIZE returns the number of record values

2.3. Expression

The precedence of expression operators is the same as the order of the major
subsections of this section (highest precedence first). Within each subsection,
the operators have the same precedence. Left- or right-associativity is
specified in each subsection for the operators discussed therein.

2.3.1. Primary expressions

2.3.1.1. identifier

An identifier is a primary expression. Its type is specified by its declaration.
2.3.1.2. integer constant

An integer constant is a primary expression.

2.3.1.3. string constant

A string is a primary expression.

2.3.1.4. (expression)

11

A parenthesized expression is a primary expression whose type and value are
identical to those of the unadorned expression.

24 Operators

24.1 Additive operators

The additive operators + and — group left-to-right.
2.4.1.1 expression + expression

The result is the sum of the expressions.
2.4.1.2 expression — expression

The result is the difference of the operands.
2.4.1.3 expression * expression

The result is the multiplication of the operands.
2.4.2 Logical operators

2.4.2.1 expression OR expression

2.4.2.2 expression AND expression

The use of “AND” and “OR” logical operators are identical to “&&” and “||”
operators respectively in C/C++ and Java.

Logical And Expr: Logical expr AND Logical expr
Logical And Expr is true if both logical expressions are true.

Logical Or Expr: Logical expr OR Logical expr

Logical Or Expr is true if either one or both of logical expression(s) is/are
true.

2.4.3 Equality operators

2.4.3.1 expression == expression

2.4.3.2 expression != expression

The == (equal to) and the != (not equal to) operators are exactly analogous to
the relational operators except for their lower precedence.

2.4.4 Assignment operators

2.4.4.1 variable := expression

12

The := (assign to) operator groups right-to-left. The value of the expression
replaces the object referred to by the variable. The operands need not have the
same type, but must be either integer or string constants.

2.4.4.2 variable += expression

The behavior of this additive assignment is equivalent to “ $var1= $var1 +
expression > while $var1 is evaluated only once.

2.4.4.3 variable = expression

This is similar to section 4.2.3.2. The behavior of this additive assignment is
equivalent to “ $var1 = $var1 — expression > while $var1 is evaluated only
once.

2.5 Declarations

There is no declaration needed. The variable is automatically assigned a data
type according to the type of the value. For example:

$var1 = “hello”;

The variable “ $var1 is assigned with the value “hello” and the data type for
this variable is automatically declared as a string.

$var2 =12;

The variable “ $var2 is assigned with the value 12 and the data type for this
variable is automatically declared as an integer.

2.6 Statements

Except as indicated, statements are executed in sequence.

2.6.1 Expression statement

Most statements are expression statements, which have the form expression;
2.6.2 Compound statement

Several statements can be used where one is expected, the compound
statement is provided:

compound-statement:
{ statement-list }

statement-list:

Statement
statement statement-list

13

2.6.3 Conditional statement
The four forms of the conditional statement are

if (expression) statement

if (expression) statement else statement

if (expression) statement elseif (expression) statement

if (expression) statement elseif (expression) statement else statement

In all cases, the expression is evaluated, and if it is non-zero, the first sub-
statement is executed. In the third and fourth cases, if the elseif expression is
non-zero, then the sub-statement in the elseif is executed. In the second and
fourth cases, if both the if and elseif expressions are zero, then the sub-
statement in the else is executed. As the “ if ” condition in Java, the “else”
ambiguity is resolved by connecting an else with the last encountered elseless
if or elseif. Zero or more elseif case can be used in a conditional statement.

2.6.4 Loop statement (while)

The while statement has the following form:
while (expression) statement

The sub-statement is executed repeatedly as long as the value of the
expression remains non-zero. The test takes place before every execution of
the statement.

2.7 Scope rules

All components of the WPSM program must be part of one file and must be
compiled at the same time. Not all source code in a program will be compiled
and generated into target language. All variables are declared as global
variables. Therefore, there are two kinds of scopes to consider: first, the
lexical scope of the variable; and second, the scope of the dependency.

2.7.1 Lexical scope

WPSM can be considered similar to a scripting language, and also uses block
structuring. Variables declared at any level are globally visible, as WSPSM
uses global scoping. Variable types can be changed dynamically based on the
type of the value assigned to it.

$vari :
$var1i :

“hello”;
12;

The first case shows that “ $var1 > is declared as string type and assigned a
value “hello”. The second case re-declares the same variable to an integer
with the value 12.

2.7.2 Scope of dependency

14

WPSM built-in variables and reserved keywords (built-in functions) have
some dependencies on one another. WPSM built-in variables are designed to
support this scope. Minimal initiations are needed to prepare the parameters
before executing the built-in functions. If a built-in variable has a default
value, it becomes optional to initialize this variable. The WPSM Java library
contains built-in functions that are repeatedly used by a program. The
precedence of some built-in variable (see built-in variables for variable
specification) and built-in functions is indicated below:

dependency:
primary

primary.
built-in variable
FN
READLINE()
OFN

built-in variable
FN (has default “*”)

FS

RT (has default “ROOT”)
RN

RA

RV

RV[integer]

RA_SIZE

RV _SIZE

15

3

Install WPSM

3.6 System requirement

WPSM programming language (WPSM) is implemented and tested on Java 2
Platform, Standard Edition (J2SE) version 1.4.1 _02; therefore WPSM will
work perfectly on any environment that contains this Java SDK.

Note: However, our research and development team designs, implements, and tests the latest
WPSM code under the Window NT/2000/XP OS environment; therefore, we are only
supporting our code under these OS environments. If the user wants to use WPSM in the
platform other than Windows 2000 N'T/2000/XP, such as UNIX, we are not reliable for the
unexpected errors.

To use the WPSM programming language, you need to have the following
development environment:

Windows NT/2000/XP
Java 2 Platform, Standard Edition (J2SE) version 1.4.1_02

Note: please visit http://java.sun.com/j2se/1.4.1/ for more Java information

3.7 Install WPSM package

Note: please see the readme.txt in the WPSM package for the latest information.

1. Un-zip the WPSM_version.zip on your machine under C drive

2. Un-zip will create a WPSM folder under C drive

3. You should have all the following directories under WPSM folder:

bin --> Contains all java classes for WPSM
sample --> WPSM examples
src --> WPSM source code

3.8 Setup WPSM environment

Note: please see the readme.txt in the WPSM package for the latest information.
1. Setup the system "PATH"
on Command Prompt windows, set PATH=%PATH%;C:\WPSM\bin
or
Add "C:\WPSM\bin" in system PATH in the system environment variable.
2. Setup the system "classpath"
on Command Prompt windows, set classpath=%classpath%;C:\WPSM\bin
or
Add "CAWPSM\bin" in system CLASSPATH in the system environment
variable.

16

4 Tutorial

We provide a “simple.xf” WPSM source code for the tutorial section. Please see
Appendix A. for the complete source codes and comments. You can find this sample
WPSM file in “C:\wpsm\sample” directory on your machine.

“sample.xf” provides the complete comments for you to understand each WPSM
syntax. Carefully reading the comment should be able to help you to know what
the whole program is doing.

“sample.xf” WPSM program simply transforms a simple data structure input file,
“fam.txt”, into a complex XML output file, “fam.xml”. As you can see in the
WPSM syntax in “sample.xf”, only few lines of WPSM codes able the inventory
manager to generate a well-formed XML.

Here is how to run “sample.xf” in your WPSM environment:

1) Open a Comment Prompt window

2) Got to "C:\wpsm\sample" directory

3) Compile the WPSM source code and run it at same time.
C:\wpsm\sample\>wpsm sample

4) Done

Note: very simple, isn’t it?> We made to run WPSM program is just as simple as run a perl
program. This is our goal since we begin to design our program, make it simple and ease of
use. There is another way to run the sample WPSM program.

3) Compile the WPSM source code, “sample.xf”. WPSM compiler will generate a
target java source file called “sample.java”

C:\wpsm\sample\>wpsmc sample

4) Compile the target java code with javac. Java compiler will generate a java
class file called “sample.class”.

C:\wpsm\sample\>javac sample.java

5) Run compiled WPSM program, “sample.class”, to transform “fam.txt”, a
simple data structure file, to “fam.xml”, a complex XML file.

C:\wpsm\sample\>java sample
6) You should have “fam.xml” in the sample directory now. Compare the

different between “fam.txt” and “fam.xml”.
7) Done

17

5 Project Plan

5.6 Team responsibility

The whole WPSM project is break into 4 major roles during the research and
development phases.

Project management & system architecture design

Peter T. Chen is responsible for: WPSM architecture design, define the
project objective, define the initial WPSM syntax, define the test plan,
development environment decision, system infrastructure and integration,
team and project management, regular meetings setup, team communication,
assign the job, and preparation and submit the reports.

Front-end design & implementation

Wai Y. Wong is responsible for: front-end subsystem detail design, WPSM
syntax and semantics, WPSM parser and lexer implementation on ANTLR,
generate Abstract Syntax Trees (AST), help the back-end developer to handle
WPSM AST, support the tester for WPSM syntax testing, and providing the
front-end documentation to the final report.

Back-end design & implementation

Miqdad Mohammed is responsible for: back-end subsystem detail design,
WPSM AST tree walker, generating the target language (JAVA) source code,
make request to the WPSM library developer, support the tester for WPSM
features testing, and providing the back-end documentation to the final report.

WPSM library design & implementation and testing

Seema Gupta is responsible for: WPSM library detail design and
implementation, supporting the back-end developer on dealing with repeating
functions, and features, WPSM testing, WPSM tutorials, and providing the
WPSM library and testing documentation to the final report.

5.7 Development phase

During the whole period of WPSM research and development cycle, several
design and development phases are introduced. WPSM project is designed
and implemented with Software Engineer approach. Couple of
implementation cycles and releases is happened during these phases.

Phase 1

Introduce to the team members

Team organization, regulation, and regular meeting
Project objective brainstorm

Phase 11

Make decision on the project objective

Break down and assign the roles

Education section on the technologies that are needed for the project goal
System requirements gathering

18

Phase II1

White paper

High-level architecture design
Subsystem detail design and discussion
Functional specifications determination

Phase IV
Development environment decision
Subsystem implementation begin

Phase V

Reference manual

Early WPSM system with basic function
WPSM testing begin

First WPSM release

Phase VI

System requirement gathering for WPSM advance features
Subsystem implementation for the advance features
Testing for the advance features

Latest WPSM release

5.8 Software development environment (SDE)

Development platform: Windows 2000/XP

Parser, lexer, and tree walker: ANTLR v2.7.2
WPSM Compiler: implemented in Java SDK v1.4.1
Target language: Java source code

5.9 Projectlog

February 6™, first group meeting for introduction and brain storming of ideas
February 8", sent ideas to professor

February 13", first meeting with TA explaining our idea for the language;
also meeting for writing the white paper.

February 15", WPSM design of architecture

February 18", meeting cancelled due to weather; white paper submitted
February 22", determine WPSM syntax and create some pseudo-code
February 25", regular meeting with TA and group meeting

February 27", determine front-end architecture

March 5™, WPSM syntax finalized

March 26", ANTLR source code completed; LRM written

March 27™, LRM submitted

April 1%, advanced features for front-end started

April 8", ANTLR source code updated; discussed back-end implementation;
questions about library; advanced features

April 15™, library draft and first walk of tree-walker and symbol table

April 26™, put all pieces together... testing level 1

April 27", found first two errors

19

April 28", updated system; questions about non-determinism

May 1%, final report; testing plan; robust final release

May 3", dependency check

May 4™, final report draft; first release; java-doc for library made available
May 6™, updated version with advanced features

May 8", second release; syntax testing completed

May 11", testing complete; final project and presentation

5.5 Front-End Development Log

March 8"

March 10"

March 11"

March 21%

March 22"

March 23"

March 25"

March 27"

March 30"

March 31%

Start writing antlr's source code after reading the antlr's
document, create header.

Lexer: Create a few basic lexer grammars.

Parser: Create the startRule grammar.

Add compile instruction to header.

Lexer: Add wpsm variable grammar, which start with '$'
character.

Parser: Add debugging info for startRule grammar.

After questioning TA, protected rule is applied.

Parser: Read more document, and learn antlr's expression
grammar.

TreeParser: Read more document, and learn how antlr's tree
parser works.

Parser: Add assignment grammars and boolean expression
grammar.
TreeParser: Play with some tree parser grammar.

Lexer: Add a few lexer grammars.

Parser: Add more assignment grammar and start working on "if
elseif else" statement grammar.

TreeParser: Still playing with some tree parser grammar.

Parser: Start with "while" statement grammar and build antlr's
AST

Parser: Modified some grammars.

Parser: Start with wpsm build-in variables and attribute variable
grammar.

Parser: Modified some grammar, and learn how protected rule
works in parser.

Parser: Start with wpsm build-in functions and add grammars
for increment and decrement.

20

April 4"

April 5™

April 11™

April 21*

April 25"

April 26™

Parser: Start work on own ErrorHandler instead of antlr's
defaultErrorHandler.

Parser: Modified some grammars and add multiple boolean
expression grammar, using newly added keywords, "AND" and

HOR" .

Parser: Work on more wpsm advanced build-in function
statement grammar.

Parser: Continued modified grammars

Parser: Add more grammars for different variable types, it's
getting much more solid.

Parser: Changed some grammars according to the change of
wpsm syntax. This is pretty much finalized.

21

6 Architectural Design
6.6 WPSM system, overall

The WPSM source code, “.xf”, is sent to WPSM compiler. WPSM compiler
will generate a Java source file. Then Java compiler will compile this Java
source again and generate a Java class. Finally, Java Virtual Machine (JVM)
alone with WPSM Library will execute the Java class. At this time the input
simple text format file will be convert to a complex XML file. Diagram A.
shows the complete WPSM system workflow.

WPSM source code

WPSM target language
(Java source cede)

Java executable file

(java,class)

Java Virtual Machine
I:JVM:I WL Output
WESM Library
(WPSII VLD

g

Input Diata
Files

Diagram A. WPSM Architecture

22

WPSM compiler is broken down into three subsystems, Front-end subsystem,
Back-end subsystem, and WPSM library. WPSM library is supporting the
first two subsystems on the features they try to accomplish. It supports the
WPSM target code at run time. Front-end subsystem contains the WPSM
parser and Lexer, and Back-end subsystem contains AST tree-walker and
WPSM target language (Java) generator. Diagram B. represents the WPSM
compiler system.

WPSM source code

AST meewalker
Code Generator

WPSM target language
Java source code

Diagram B. WPSM compiler architecture

6.7 Front-end subsystem

The Front-End Subsystem begins with the creation of a WPSM source file.
This file has the extension .xf, and is taken in by the WPSM compiler. The
compiler checks the integrity of the code, first by taking in the stream of
characters from the source file, and breaking that stream up into tokens using
antlr’s Lexer Class. Each token consists of a keyword, a variable, an integer, a
record attribute, or a record variable (the formats of each of these is explained
above). Once these tokens have been created, they are sent to antlr’s Parser
Class. The Parser class takes these tokens and checks whether they are
syntactically correct to WPSM’s specifications.

There may be errors present in the input file, which are found through a series
of checks. One may encounter a Lexer error, which occurs if there is an
attempt to use a character that is invalid and unsupported in the grammar. If
this occurs, the process is aborted and the user must reinitiate the compilation
process with the corrected input file. If there are no Lexer errors, the next

23

checks that take place are the Parser checks. If there is an invalid token, or
tokens are out of order, the Parser will throw an exception and will abort the
process. Once the user fixes this error, they may recompile the input file and
hopefully will have fixed the error. If the input file passes each of these tests,
it is syntactically viable and an AST should be generated.

The grammar consists of several tokens that make up several different types of
expressions with different functionalities. The details of the grammar are
provided in the appendix, and one can determine the exact format from that
detail. The structure of the AST is also defined in the grammar (in terms of
root nodes and children). Each node on the tree represents a node specified in
the WPSM grammar. Once the tree is generated without any errors, the Front-
End Subsystem completes and sends its output to the Back-End Subsystem.

Note: Please see Appendix B. for the Front-end parser and lexer grammar

6.8 Backend-end subsystem

One could think of the Back-End Subsystem as the intermediate between the
other two subsystems, the Front-End and the Library. Broadly, the Back-End
begins with the AST, which has been handed to it by the Front-End, and ends
at generated intermediate code (in our case JAVA) through interaction with
the library. The generated JAVA code then interacts with the System.out and
with the output and input files for WPSM, and is compiled by JAVA’s own
compiler. Now we will go through the subsystem in a little bit more depth.

When given the AST, the Back-End begins to traverse through the AST
checking for symantic integrity. Though a piece of code could be
syntactically correct, the pieces may not make sense. For example, an [F
clause consists of IF (conditional) statement ELSE statement. If the
conditional is accessing a variable that has not been initialized, and has no
value, there is a symantic error. In the WPSM Back-End Subsystem, there are
two walks of the AST by antlr’s TreeWalker class. The primary walk
determines which variables have been initialized and which have been used
prior to initialization. When a variable is seen in the input file, that variable is
appended to the Symbol Table, which keeps track of all variables in the
program. If a variable is accessed, it must have been previously initialized,
and must occur in the Symbol Table. Once this symbol table is created, we go
on to the next step of the Back-End, code generation. In this step, the AST is
walked for a second time and each type of token is analyzed and some
generated JAVA code is outputted. The first step of code generation is to
create the header to a JAVA file, and then to initialize all the variables that are
contained in the Symbol Table. This is to ensure that the JAVA compiler will
not encounter a variable that is not initialized. Once this takes place, each
node of the AST is traversed, and from each node a little bit of code is created
with the help of the Library. Once the entire AST is traversed, we end up with
a well-formed JAVA file that will be compiled and run.

24

There are several symantic errors that are possible with the Back-End. Firstly,
if a variable is used before it has been initialized, an exception will be thrown
and the program will be aborted. A special case of errors is the Run-Time
error. A Run-Time error is an error that occurs while a program is running.
One such error is when a user attempts to multiply a string with an integer.
The function that multiplies these two objects has a check to see what types of
objects are being multiplies. If the check fails, and the two objects are not
integers (as is the case), the program is aborted. Another such error is an
attempt to read from an input file that does not exist. There are several other
errors that are possible, but if one follows the specifications of WPSM, and
pays heed to the error messages and warnings, they should be able to complete
the compiling process without trouble.

Note: Please see Appendix B. and Appendix C. for the Back-end tree-walker grammar

6.9 WPSM library

In essence the muscle of our language resides in the library. It is responsible
for making sure all that the user wants to do and all that the user is allowed to
do with WPSM syntax is taken care of properly by the library. The WPSM
library deals with the data input and is responsible for providing methods to
the code generator for manipulating the data and outputting formatted XML
output. A library was included in the WPSM architecture for many reasons.
For one, it allowed for reusability of code. Since WPSM aims to deal mostly
with large datafiles, most of the functions like READLINE() are called
hundreds of times. A library helps simplify the intermediate code, allows for
easy upgrades, and allows for easy debugging. Once the java code has been
generated by the backend, it is a lot easier for one who may not know much
about the complier to build on the language and make it even more powerful.
Also, it can be integrated with quite possibly any language out there. All that
would need to happen is that the language’s back end would need to use
WPSM library’s functions. Another benefit is that changes in the syntax don’t
directly effect the library. The code generator deals with any grammar or
syntax changes and makes sure to call the right library functions in the right
order. The WPSM also comes with its own javadoc to help developers in
upgrading and debugging.

Note: Please see Appendix C. for the WPSM Library source code.

25

7 Testing Plan

WPSM test plan is break down to several sections. Each section is focusing
on specific task. The idea of this breaking down is able to provide a latest
WPSM release after the each testing section and ensure that the development
is continued.

WPSM source file testing

Only the file with extension “.xf” should be accepted by WPSM compiler.
Everything else should not be accepted and the proper error message should be
print on screen. For example, file not exists, file is not xf type, file doesn’t
have extension, etc. (Front-end developer should responsible for this handling)

WPSM syntax testing

All syntax that we support should pass WPSM parser, otherwise, syntax error.
For example, all WPSM preserve key words should be compiled correctly. If
the WPSM programmer uses the wrong key word, the proper error message
should print out on the screen. (Front-end developer should responsible for
this handling and please send out the latest WPSM syntax to me)

WPSM dependencies testing
Syntax dependence is a unique feature in WPSM that helps the WPSM
programmer to deal with required XML field.

Note: Please see Appendix D. for detail dependence test plan.

There are dependencies on the WPSM keywords. For example, FN need to
have value before anything runs, Attributes (RA) need to be initialized before
value can begin to be set up, etc. Please verify these dependencies. (Both
front-end and back-end should be responsible on this) This will be part of the
syntax test case.

WPSM features testing

Includes basic and advance features. All the features we address in the
reference manual should work properly and should be tested without error.
For example, attribute manipulating, filtering, etc. (Back-end developer
should responsible for all the features working properly.) Only the features
that approve by you will be put into the reference manual, otherwise, the
feature will be addressed to be included in future release.

Filtering

Column manipulation

XML tags (element, attribute) manipulation
Data manipulation

Arithmetic

Error handling ability

Release control

Every time when you are finish one testing you can ask me to build a release.
This way we can keep all the latest working code for specify level. For

26

example, when the testers done with the basic testing (this mean the front-end
and back-end developers fix all the bugs for basic function), we can have a
new release, and then go on to next testing. This way we can always have a
working latest release to hand in to the professor.

Subtleties of our language:

Our language supports all characters and numbers in the English language. The user
should stay away from using any foreign characters in the data input file as some
characters result in java ArrayOutOfBounds exception. Also, XML does not allow
the user to use numbers or strings starting with numbers as Attributes. In this version,
WPSM allows the user to input anything when setting RA. And lastly, WPSM
supports the use of escape characters in the data input, however, does not support it in
xf files.

27

Appendix A.

sample.xf

BEGIN;

//Set Input File Name

//

//This is not necessary in order to have the language run properly.
//The default value for this is "in.txt".

//Set Output File Name

//

//This is not necessary in order to have the language run properly.
//The default value for this is "out.xml".

e
OFN := "fam.xml";

J mm e
//Set Delimeter

//

//This is not necessary in order to have the language run properly.
//The default value for this is ",".

[e e
FS := ™, 7;

/) m
//Set RA

//

//There are many ways you can set RA:

// 1) You can read the first line of your input file for the attributes
// ex: RA := READLINE();

// 2) You manually input the attributes

// ex: RA := "apple, peach, orange";

// note: you must delimit the Sring with the same delimeter set
// above.

// 3) You can change a specific attribute

// ex: $1 := "bana";

/7 $1 += "na";

// 4) You can append to attribute Vector

// ex: RA += "seema";

// NOTE: Once you have created your first record, you may not change RA.
// NOTE: If you try to access an RA value that has not been initialized,

// you will get a runtime error.

// NOTE: Thie first index of RA anf RV start with 0.

/T -
RA := READLINE () ;

$2 := "birthday";

PRINT (RA) ;

/e -
//Create Record

//

//This command outputs a record to the XML file.
//There are several ways to create a record.
// 1) You can read a line from the input and set it in two ways

// (a) ex: CREATERECORD (READLINE ()) ;
// (b) ex: RV := READLINE () ;

// CREATERECORD (RV) ;

// 2) You can input your own string

// (a) ex: CREATEDRECORD ("mom, dad, daughter, son");
// (b) ex: RV := "100,200,300,400";
// CREATERECORD (RV) ;

// 3) You can read in a line and change it
// (a) ex: RV := READLINE () ;
// RV[2] := "300";

// CREATERECORD (RV) ;

// (b) ex: $line := READLINE () ;

// $line += "four";

// CREATERECORD ($1ine) ;

28

// (c) ex: RV := READLINE () ;

// RV += "four"; //this appends to the RV Vector
// CREATERECORD (RV) ;

//

// NOTE: You can only access current RV values. RV 1is overwritten everytime a
// new setRV (Vector values) method is called.
/e
RV := READLINE () ;

RV[2] := "Edwards";

PRINT (RV) ;

CREATERECORD (RV) ;

PRINT (RV) ;
CREATERECORD ("mom, dad, daughter, son") ;

/==
//Closes the input and output files.

/==
PRINT ("done") ;

END;

29

Appendix B.

wpsm_lex_par_twl.g

header {

// Date: March 07, 2003

// Class: COMS W4115, Programming Language and Translator - Spring 2003
// Project: WPSM programming language project.

// Created by: Wai Wong, Migdad Mohammed

// Modified:

// Group: Wai, Peter, Migdad, Seema

// Compile ANTLR source: Jjava antlr.Tool wpsmc.g
// wpsm_lex par twl.g is ANTLR source file

// Compile java source: javac *.java

// Run the compiler: java Main < input file
// input_file is WPSM

//

// syntax source file

}

// Class TW
class TW extends TreeParser;
options {k = 2;}

startRule: # ("BEGIN" (stmts)* "END");
stmts: stmt_single | if stmt | while_stmt;
while_ stmt: # ("WHILE" bool_ expr stmt_list);
if stmt: #("IF" bool expr stmt list (elsetail)?);
elsetail: (elseif stmt)+ (else stmt)?

| else_stmt;
elseif stmt: # ("ELSEIF" bool expr stmt_list);
else_stmt: #("ELSE" stmt_list);
stmt list: # (LBRACE (stmts)+)

| stmt _single;

stmt_single: # (INC_ASSIGN a:choice) | #(DEC_ASSIGN b:choice) | #(ASSIGN
c:choice) | assign pl ml

| create_rc_stmt | print_stmt | SEMI;
choice: c:VAR {Functions.finsert(c.getText());} arith expr | ATTR IDX
arith_expr | key arith expr;
assign_pl ml: #(a:PLUS_ONE b:VAR) {Functions.find(b.getText());}

| #(c:MINUS_ONE d:VAR) {Functions.find(d.getText());};

print_stmt: print_fnc;
create_rc_stmt: create rc_ fnc;
arith_expr: #(PLUS arith_expr arith_expr)

| # (MINUS arith expr arith expr)
|# (MUL arith_expr arith_ expr)

|atom;

atom: key | readline fnc | INT | STR CONST | ATTR IDX | a:VAR
{Functions.find(a.getText());} | ra_size | rv_size;
bool expr: # (LPAREN bool_ combo) ;
bool_ combo: # ("AND" bool_combo bool_ combo)

| #("OR" bool combo bool combo)

| #(EQU booleq)

| # (NEQU booleq)

| bool int

| bool expr;
booleq: boolatom (boolatom | eof | STR_CONST | INT | ra_size | rv_size);
boolatom: a:VAR {Functions.find(a.getText());} | ATTR IDX | readline fnc |
key;
bool int: #(a:GTHAN_EQU b:VAR (c:INT | ra size | rv_size)

{Functions.find (b.getText ());})

30

| #(d:GTHAN e:VAR (f:INT | ra size | rv_size)
{Functions.find(e.getText ());})

| #(g:LTHAN_EQU h:VAR (i:INT | ra_size | rv_size)
{Functions.find (h.getText ());})

| #(J:LTHAN k:VAR (1:INT | ra size | rv_size)
{Functions.find(k.getText ());});

print_fnc: #("PRINT" arith expr);
create_rc_fnc: # ("CREATERECORD"arith expr);
readline_fnc: "READLINE";

eof: "EOF";

empty str: "NULL";

/// BEGIN OF CHANGED AND NEW GRAMMAR

key
"ENT | "ES" | "RT" | "RN" | "RA" | "OFN" | rv key;:
rv_key B
: #("RV" (rv_assig)?);
rv_assig

: # (LBRACKET INT);
/// END OF CHANGED AND NEW GRAMMAR

ra_size : "RA_SIZE";
rv_size : "RV_SIZE";
// Class P

[111170 7777777777 77
class P extends Parser;
options {
buildAST = true;
k= 2;
defaultErrorHandler = false;
}

// Program List (Block)
startRule
: "BEGIN"" SEMI!
(stmt_single | if stmt | while stmt)*
"END" SEMI!;

// Statement List (Block)
while stmt
: "WHILE"" bool expr stmt_list;
if stmt
: "IF"" bool_expr stmt_list (((elseif stmt)+
(else stmt)?) |
else stmt) ?;
elseif stmt
: "ELSEIF"" bool expr stmt_ list;
else stmt
: "ELSE"” stmt_list;
stmt list
: (LBRACE” (stmt_single | if stmt | while stmt)+
RBRACE!)
| stmt_single;

// Assignment Statements
stmt_single

assign var | assign pl ml | create rc stmt |
print_stmt | SEMI;
/* exception catch [RecognitionException ex] {
System.out.println("error: illegal
variable assigment -" +
" line " + ex.getLine() + "; column " +
ex.getColumn()) ;

System.out.println("Tips: $literal :=
[$[integer], integer, string
constant]") ;
} */

assign var

31

(VAR | ATTR_IDX | key) (INC_ASSIGN” | DEC_ASSIGN"
| ASSIGN")
(arith_expr) SEMI!;

assign pl ml
: VAR (PLUS_ONE” | MINUS_ONE") SEMI!;
create_rc_stmt
: create rc_ fnc SEMI!;
print_stmt
: print fnc SEMI!;
arith_expr
: sum_expr;
// {System.out.println("arith expr");};
sum_expr
: prod_expr ((PLUS” | MINUS") prod_expr)*;
prod expr
: atom (MUL” atom) *;
atom
: key | readline fnc | INT | STR CONST | ATTR_IDX | VAR |
ra size | rv size |
(LPAREN! arith expr RPAREN!);

// Comparison Statements
bool_ expr
: LPAREN” bool combo RPAREN!;
/* exception catch [RecognitionException ex] {
System.out.println("error: illegal
boolean expression -" +
" line " + ex.getlLine() + "; column " +
ex.getColumn()) ;
System.out.println("Tips: [IF (expr),
ELSEIF (expr), WHILE (expr)]"):;
} */
bool combo
: bool single (("AND"" | "OR"") bool single)*;
bool single
: bool var | bool int | bool expr;
bool_var
: bool arg (EQU” | NEQU") (bool arg | STR_CONST | INT |
eof | ra size | rv_size);
bool arg
: readline fnc | ATTR IDX | VAR | key;
/* bool_var
: VAR (EQU” | NEQU”) (STR CONST | ATTR IDX | INT);

bool attr
: ATTR IDX (EQU” | NEQU") (STR _CONST | ATTR IDX | VAR);
*/
bool int
: VAR (GTHAN_EQU” | GTHAN” | LTHAN_EQU” | LTHAN") (INT |
ra_size | rv_size);

/* bool readline
: readline fnc (EQU” | NEQU") (eof | STR CONST);
*/

// Build-in Function;
print fnc
: "PRINT"” LPAREN! arith expr RPAREN!;
create rc fnc
: "CREATERECORD"” LPAREN! arith expr RPAREN!;

// BEGIN OF CHANGED GRAMMAR
readline_fnc
H "READLINE"” LPAREN! RPAREN!;
// END OF CHANGED GRAMMAR

eof

: "EOF";
empty_str

: "NULL";

/// BEGIN OF CHANGED AND NEW GRAMMAR
key
"EN" | "ES" | "RT" | "RN" | "RA" | "RV" | "OFN" |
rv_key;
rv_key
: "RV"" array_ elem;
array elem
: LBRACKET” INT RBRACKET!;

32

/// END OF CHANGED AND NEW GRAMMAR

ra_size
"RA SIZE";

rv_size
"RV_SIZE";

// Class L

[0 7777777777 77
class L extends Lexer;
options {

k = 2;

charVocabulary = '"\3'..'\377"';
}
// Identifier rules

protected DIGIT

protected DQUOTES

LITERAL
: (ta'..'z' A2t
(ta'. tZU[TATLLTZNT0TL L9)% // Can't make LITERAL protected?
INT
: (DIGIT) +;
ATTR IDX
: ('$' INT);
VAR
: ('$' LITERAL);
STR_CONST
: DQUOTES (' ' | '!' | '#'..'~')* DQUOTES;

// Assignment operators
ASSIGN

INC_ASS I:GN
DEC_ASS I:GN
PLUS_ON;
MINUS_ON%
// Arithematic operators
PLUS
MINUS
MUL

// Comparing operators
EQU

n__mn.
7

NEQU

: ny=n.
GTHAN EQU
- . nsov,
LTHAN EQU
. ne=n,
GTHAN
LTHAN

// Block terminators
SEMI

COMMA

LPAREN
RPAREN
LBRACE

RBRACE

33

LBRACKET

RBRACKET

// Skipped characters

NEWLINE

Unix; "\r\t" are used in some

("\r\n" | '\n' | "\r\t")

// editor program as next line character.

COMMENT

WS

{
newline () ;
SsetType (Token.SKIP) ;

("//™) (" '..'~" | '"\t')* NEWLINE

$setType (Token.SKIP) ;

("t \eY)

$setType (Token.SKIP) ;

34

// DOS or

Appendix C.

wpsm_lex_par_tw2.g

// Date: March 07, 2003

// Class: COMS W4115, Programming Language and Translator - Spring 2003
// Project: WPSM programming language project.

// Created by: Migdad Mohammed

// Modified:

// Group: Wai, Peter, Miqgdad, Seema

// Compile ANTLR source: Java antlr.Tool wpsmc.g
// wpsm_lex par tw2.g is ANTLR source file

// Compile java source: javac *.java

// Run the compiler: java Main < input file
// input_file is WPSM

//

// Class TW2
class TW2 extends TreeParser;
options {k = 2;}

startRule: {Functions.test = false;}# ("BEGIN" {Functions.println ("public
class " + Functions.classname + "\n{\n\tpublic static void main(String []
args)\n\t{"); Functions.outprintLL();} ({Functions.printtab();} stmts)* "END")
{Functions.printtab () ;

Functions.print ("XLib.closeFile() ;") ;Functions.println ("\t}\n}");
Functions.close(); };

stmts: stmt _single {Functions.println(";");} | if stmt |
while stmt;

while_ stmt: # ("WHILE" {Functions.print("while");} bool_expr
{Functions.print ("\n");} stmt_ list);

if stmt: #("IF" {Functions.print("if");} bool expr
{Functions.print ("\n");} stmt_list (elsetail)?);
elsetail: (elseif stmt)+ (else_stmt)?
| else stmt;
elseif stmt: #("ELSEIF" {Functions.printtab(); Functions.print("else 1f");}
bool_expr {Functions.print("\n");;} stmt_list);
else stmt: #("ELSE" {Functions.printtab(); Functions.print ("else");}
{Functions.print ("\n");;} stmt_list);
stmt_list: # (LBRACE {Functions.printtab(); Functions.println("{ ");

Functions.tab++;} ({Functions.printtab();} stmts)+ {Functions.tab--;
Functions.printtab(); Functions.println("}");})
| {Functions.tab++; Functions.printtab(); Functions.tab-

-;} stmt_single {Functions.println(";");};
stmt single: # (INC_ASSIGN a:incchoice) | #(DEC_ASSIGN decchoice) | # (ASSIGN
assignchoice) | assign pl ml

| create rc stmt | print stmt | SEMI;
incchoice: a:VAR {Functions.print (Functions.conv(a.getText()) + ".inc(");}
arith expr {Functions.print(")");}

| b:ATTR IDX {Functions.print ("XLib.setRA(XLib.getRA (" +
Functions.index (b.getText()) + ") + ");} arith expr {Functions.print(", " +

Functions.index (b.getText()) + ")");}
| c:keyl {Functions.print("XLib.set" + c.getText () + " (XLib.get"

+ c.getText() + "() + ");} arith expr {Functions.print(")");}

| d:key2 {Functions.print ("XLib.setRA (XLib.toString (XLib.getRA())
+ ");} arith expr {Functions.print(")");}

| e:rv_key
{if (Functions.rv) {Functions.print ("XLib.setRV (XLib.getRV ("+ Functions.rvint + ") +
");}telse{Functions.print ("XLib.setRV (XLib.toVector (XLib.toString (XLib.getRV ()) +
");}} arith expr {if (Functions.rv){Functions.print(", " + Functions.rvint + ")");
Functions.rv = false;}else{Functions.print("))");}};
decchoice: a:VAR {Functions.print (Functions.conv(a.getText()) + ".dec(");}
arith_expr {Functions.print(")");}

| b:ATTR IDX {System.out.println("WPSM exception: attempting to
decrement " + b.getText () + "\nSorry! error(s) is/are found, WPSM compiling

process aborted."); System.exit(0);} arith expr
| c:keyl {System.out.println ("WPSM exception: attempting to
decrement " + c.getText () + "\nSorry! error(s) is/are found, WPSM compiling

process aborted."); System.exit (0);}arith expr

35

| d:key2 {System.out.println ("WPSM exception: attempting to

decrement " + d.getText () + "\nSorry! error(s) is/are found, WPSM compiling
process aborted."); System.exit (0);}arith expr

| e:rv_key {System.out.println("WPSM exception: attempting to
decrement " + e.getText () + "\nSorry! error(s) is/are found, WPSM compiling
process aborted."); System.exit (0);}arith_expr;
assignchoice: a:VAR {Functions.print (Functions.conv(a.getText()) +
".replacevVal (");} arith_expr {Functions.print(")");}

| b:ATTR IDX {Functions.print ("XLib.setRA(\"\" + (");}
arith_expr {Functions.print("), " + Functions.index(b.getText()) + ")");}

| c:keyl {Functions.print ("XLib.set" + c.getText () + "(\"\" +
(");} arith_expr {Functions.print("))");}
| d:key2 {Functions.print ("XLib.set" + d.getText () +

" (XLib.toVector (\"\" + (");} arith expr {Functions.print(")))");}

| e:rv_key
{if (Functions.rv) {Functions.print ("XLib.setRV (") ;}else{Functions.print ("XLib.setRV
(XLib.toVector(");}} arith expr {if (Functions.rv) {Functions.print(", " +
Functions.rvint + ")"); Functions.rv = false;}else{Functions.print("))");}};
assign_pl_ml: #(a:PLUS_ONE b:VAR) {Functions.print (Functions.conv (b.getText())
+ ".inc(\"1\")");}

| (c:MINUS_ONE d:VAR)
{Functions.print (Functions.conv (d.getText ()) + ".dec(\"1\")");};

print_stmt: print_fnc;
create_rc_stmt: create rc_ fnc;
arith expr: #(PLUS {Functions.print ("Functions.add(");} arith expr
{Functions.print (",");} arith_expr {Functions.print(")");})
| # (MINUS {Functions.print ("Functions.sub(");} arith expr

{Functions.print (",");} arith_expr {Functions.print(")");})
| # (MUL {Functions.print ("Functions.mul(");} arith expr
{Functions.print (",");} arith_expr {Functions.print(")");})

|atom;
atom: a:keyl {Functions.print ("XLib.get" + a.getText () +
"()");} | b:key2 {Functions.print ("XLib.toString (XLib.getRA())");}

| rv_key {if(Functions.rv) {Functions.print ("XLib.getRV ("+
Functions.rvint + ")");Functions.rv =
false;}else{Functions.print ("XLib.toString (XLib.getRV ())");}}

| readline fnc | c:INT {Functions.print("\"" + c.getText() +

"\"");}| d:STR_CONST {Functions.print(d.getText());}

| £:ATTR IDX {Functions.print ("XLib.getRA(" +
Functions.index (f.getText()) + ")");}| e:VAR
{Functions.print (Functions.conv(e.getText()) + ".getstringVal()");}

| ra_size {Functions.print ("String.valueOf (XLib.getRASize (

)" i}
| rv_size {Functions.print("String.valueOf (XLib.getRVSize())"

")}

bool_expr: # (LPAREN {Functions.print (" (");} bool_combo

{Functions.print (")");});

bool combo: # ("AND" bool combo {Functions.print(" && ");} bool combo)
| #("OR" bool combo {Functions.print (" [| ");}

bool combo)
| #(EQU boolatoml boolatom?2)

| #(NEQU {Functions.print("!(");} boolatoml boolatom2
{Functions.print(")");})

| bool int

| bool expr;
boolatoml: a:VAR {Functions.print (Functions.conv(a.getText()) +
".getstringVal()");}

| b:ATTR_IDX {Functions.print ("XLib.getRA(" +
Functions.index (b.getText()) + ")");}
| readline_fnc
| c:key {if (Functions.rv) {Functions.print ("XLib.getRV (" +
Functions.rvint + ")"); Functions.rv = false;}
else if(c.getText () .equals ("RA") ||
c.getText () .equals ("RV")) {Functions.print ("XLib.toString (XLib.get" + c.getText() +
"O)") i}
else{Functions.print ("XLib.get" + c.getText () +
"O") itk
boolatom?2: a:VAR {Functions.print(".equals (" + Functions.conv(a.getText ())
+ ".getstringVal())");}
| b:ATTR IDX {Functions.print ("XLib.getRA(" +
Functions.index (b.getText()) + ")");}

36

| {Functions.print (".equals(");} readline_ fnc

{Functions.print (")");}
| c:key {if(Functions.rv) {Functions.print (".equals (XLib.getRV ("
+ Functions.rvint + "))"); Functions.rv = false;}

else if(c.getText () .equals ("RA") ||
c.getText () .equals ("RV")) {Functions.print (".equals (XLib.toString (XLib.get" +
c.getText () + "()))");:}
else{Functions.print (".equals (XLib.get" + c.getText () +
"O)") i}
| eof {Functions.print(".equals (\"EOF\")");}
| d:STR CONST {Functions.print(".equals(" + d.getText() + ")")
| e:INT {Functions.print(".equals (\"" + e.getText() + "\")");}
| ra size
{Functions.print (".equals (String.valueOf (XLib.getRASize ()))");}
| rv size
{Functions.print (".equals (String.valueOf (XLib.getRVSize ()))");};

i}

bool int: #(a:GTHAN EQU b:VAR {Functions.print (Functions.conv(b.getText())
+ ".gte(");} (c:INT {Functions.print(c.getText() + ")");} | rv_size
{Functions.print ("XLib.getRVSize())");}| ra size
{Functions.print ("XLib.getRASize ())");}))
| #(d:GTHAN e:VAR
{Functions.print (Functions.conv(e.getText()) + ".gt(");} (f£:INT
{Functions.print (f.getText () + ")");} | rv_size
{Functions.print ("XLib.getRVSize())");}| ra size
{Functions.print ("XLib.getRASize ())");}))

| #(g:LTHAN_EQU h:VAR

{Functions.print (Functions.conv (h.getText()) + ".lte(");} (i:INT

(
{Functions.print (i.getText () + ")");} | rv_size
{Functions.print ("XLib.getRVSize())");}| ra_size
{Functions.print ("XLib.getRASize ())");}))

| #(j:LTHAN k:VAR

{Functions.print (Functions.conv (k.getText()) + ".1t(");} (l:INT
{Functions.print (l.getText () + ")");} | rv_size
{Functions.print ("XLib.getRVSize())");}| ra size
{Functions.print ("XLib.getRASize())");})):
print_fnc: # ("PRINT" {Functions.print ("System.out.println(");}
arith expr) {Functions.print (")");};
create_rc_fnc: # ("CREATERECORD"
{Functions.print ("XLib.createRecord (XLib.toVector (");} arith expr
{Functions.print ("))");});
/*{Functions.rec = true; Functions.print ("XLib.createRecord(");}

(b:keyl {Functions.print ("XLib.get" +
b.getText () + "()");}
| c:key2 {Functions.print("XLib.get" +
c.getText () + "()");}
| rv_key
{if (Functions.rv) {Functions.print ("XLib.toVector (XLib.getRV ("+ Functions.rvint +
"))");Functions.rv = false;}else{Functions.print ("XLib.getRV()");}}
| a:STR CONST
{Functions.print ("XLib.toVector (" + a.getText () + ")");}
| {Functions.test = true;
Functions.print ("XLib.readToVector()");} readline fnc {Functions.test = false;}
| d:VAR
{Functions.print (Functions.conv (d.getText ()) + ".getstringvVal()");}))
{Functions.print(")");};
*/
readline_fnc: "READLINE"
{if (!Functions.test) {Functions.print ("XLib.readLine()");};};

eof: "EOF";

empty str: "NULL";

key: keyl | key2 | rv_key;

Keyl: WEN" | "FS" | "RT" | "RN" | "OFN";
key2: "RA";

rv_key: #("RV" (rv_assig)?);

rv_assig: #(LBRACKET {Functions.rv = true;} d:INT {Functions.rvint =
Integer.parselnt (d.getText ());});

ra size: "RA SIZE";
rv_size: "RV_SIZE";

37

Main.java

import java.io.*;

import antlr.CommonAST;

import antlr.collections.AST;
import antlr.debug.misc.ASTFrame;

class Main {
public static void main(String[] args) {

String temp = "";

try {

temp = args([0];

Functions.output = temp;

Functions.initial () ;

FileReader theFile = new FileReader (temp) ;

BufferedReader input = new BufferedReader (theFile);

//DataInputStream input = new DataInputStream(temp);

//System.out.print (input) ;

L lexer = new L(input);

P parser = new P (lexer);

parser.startRule () ;

CommonAST parseTree = (CommonAST)parser.getAST();
// System.out.println('\n' + parseTree.toStringList());
// System.out.println('\n' + "Displaying WPSM AST...");
// ASTFrame frame = new ASTFrame ("WPSM AST", parseTree);
// frame.setVisible (true);

System.out.println("first walk");

TW walker = new TW();

walker.startRule (parseTree) ;
// L2 lexer2 = new L2 (input);

System.out.println ("second walk");
// P2 parser2 = new P2 (lexer);
// parser2.startRule () ;

theFile = new FileReader (temp) ;

input = new BufferedReader (theFile);

//DatalnputStream input = new DataInputStream(temp);

//System.out.print (input) ;
L2 lexer2 = new L2 (input);

P2 parser2 = new P2 (lexer?2);
parser2.startRule () ;

CommonAST parseTree?2 = (CommonAST)parser2.getAST();

TW2 walker2 = new TW2();
walker2.startRule (parseTree2) ;

}catch (FileNotFoundException el) {

System.err.println ("WPSM exception:

the file " + temp + " was

not found\nSorry! error(s) is/are found, WPSM compiling process aborted.");

}catch (Exception e) {

System.err.println ("WPSM exception:

s)

System.err.println("Sorry! error(
process aborted.");
}
}

LinkedList.java

// LinkedList class

//

// CONSTRUCTION: with no initializer
// Access 1s via LinkedListItr class

//

38

"te);
is/are found, WPSM compiling

// ******************PUBLIC OPERATIONS*********************

// boolean isEmpty() --> Return true if empty; else false
// void makeEmpty () --> Remove all items

// LinkedListItr zeroth()--> Return position to prior to first
// LinkedListItr first() --> Return first position

// void insert(x, p) --> Insert x after current iterator position p
// void remove(x) --> Remove x

// LinkedListItr find(x)

// --> Return position that views x

// LinkedListItr findPrevious(x)

// --> Return position prior to x

[] KEKEKKA KA KK A K KA KK XERRORSGH * % H % Kk k& Kk &k ok &k K &k * ko k k& * KAk ok x Kk ok

// No special errors

/**

* Linked list implementation of the list

* using a header node.

* Access to the list is via LinkedListItr.
* @author Mark Allen Weiss

* @see LinkedListItr

*

/
public class LinkedList
{
/**

* Construct the list

*/
public LinkedList ()
{

header = new ListNode(null);

}

/‘k*

* Test if the list is logically empty.

* @return true if empty, false otherwise.
*/

public boolean isEmpty()

{

return header.next == null;
}
/**
* Make the list logically empty.
*/

public void makeEmpty()
{

header.next = null;
}

/‘k‘k
* Return an iterator representing the header node.
*/
public LinkedListItr zeroth()
{
return new LinkedListItr(header);

}
/‘k*

* Return an iterator representing the first node in the list.
* This operation is valid for empty lists.
*/
public LinkedListItr first()
{
return new LinkedListItr(header.next);

}
/‘k‘k

* Insert after p.
* @param x the item to insert.
* @param p the position prior to the newly inserted item.
*/
public void insert(Variable x, LinkedListItr p)
{
if(p !'= null && p.current != null
p.current.next = new ListNode(x, p.current.next);

39

/**
* Return iterator corresponding to the first node containing an item.
* @param x the item to search for.
* @return an iterator; iterator isPastEnd if item is not found.
*/
public LinkedListItr find(Variable x)
{

/* 1*/ ListNode itr = header.next;
/* 2%/ while(itr != null && !itr.element.equals(x))
/* 3%/ itr = itr.next;
/* 4x/ return new LinkedListItr(itr);
}
/**

* Return iterator prior to the first node containing an item.
* @param x the item to search for.
* @return appropriate iterator if the item is found. Otherwise, the
* iterator corresponding to the last element in the list is returned.
*/
public LinkedListItr findPrevious(Variable x)

{

/* 1%/ ListNode itr = header;
/* 2%/ while(itr.next != null && !itr.next.element.equals(x))
/* 3%/ itr = itr.next;
/* 4/ return new LinkedListItr(itr);
}
/‘k*

* Remove the first occurrence of an item.
* @param x the item to remove.
*/
public void remove(Variable x)
{
LinkedListItr p = findPrevious(x);

if(p.current.next != null)
p.current.next = p.current.next.next; // Bypass deleted node

}

public void change(Variable x, LinkedListItr itr) //changes the current
number heald in the exp class
{
itr.current.element = x;

}

public static void opLL(LinkedList theList)
{
if(theList.isEmpty())
{}
else
{
LinkedListItr itr = thelist.first(); //this print method will print
an (x * 10%y) format
for(; !itr.isPastEnd(); itr.advance())

{

if (itr.retrieve () .toString () .charAt (0) == '§")
Functions.println ("\tVariable " +
Functions.conv (itr.retrieve () .toString()) + " = new Variable ("™ + "\"" +
Functions.conv (itr.retrieve () .toString()) + "\"" + ", \"\");");
else

Functions.println ("\tString " +
itr.retrieve() + ";");
}
}

System.out.println();
}
// Simple print method

public static void printList(LinkedList theList)

{
if(thelList.isEmpty())

40

System.out.print ("Empty list");
else
{
LinkedListItr itr = thelList.first(); //this print method will print
an (x * 10%y) format
for(; !itr.isPastEnd(); itr.advance())
{
if (itr.retrieve () .toString () .charAt (0) == '$")
System.out.println(itr.retrieve() + " ="
+ itr.retrieve() .getstringval());

else

System.out.println("built in var = " +
itr.retrieve());

}
}

System.out.println();
}

private ListNode header;

LinkedListItr.java

// LinkedListItr class; maintains "current position"

//

// CONSTRUCTION: Package friendly only, with a ListNode

//

// ******************PUBLIC OPERATIONS*********************

// void advance() --> Advance

// boolean isPastEnd() --> True if at "null" position in list
// Object retrieve --> Return item in current position
/**

* Linked list implementation of the list iterator

* using a header node.

* @author Mark Allen Weiss
* @see LinkedList
*/
public class LinkedListItr
{
/**
* Construct the list iterator
* @param theNode any node in the linked list.
*/
LinkedListItr(ListNode theNode)
{

current = theNode;

}

/**
* Test if the current position is past the end of the list.
* @return true if the current position is null.
*/
public boolean isPastEnd()
{
return current == null;

}
/‘k*

* Return the item stored in the current position.
* @return the stored item or null if the current position
* is not in the list.
*/
public Variable retrieve()
{
return isPastEnd() ? null : current.element;

}

/**
* Advance the current position to the next node in the list.
* If the current position is null, then do nothing.

*/

41

public void advance()
{
if(!isPastEnd())
current = current.next;

}

ListNode current; // Current position

ListNode.java

// Basic node stored in a linked list
// Note that this class is not accessible outside
// of package DataStructures

class ListNode
{
// Constructors
ListNode (Variable theElement) //contains an element of the class exp
{
this(theElement, null);
}

ListNode (Variable theElement, ListNode n)
{

element = theElement;

next = n;

// Friendly data; accessible by other package routines
Variable element;
ListNode next;

Functions.java

import java.io.*;

public class Functions
{
static LinkedList templl = new LinkedList();
static LinkedListItr itr = templl.zeroth();
static String output;
static String classname;
public static FileWriter writer;
public static BufferedWriter bu;
public static PrintWriter fileOut;
public static boolean test = false;

public static boolean rec = false;
public static boolean rv = false;
public static boolean boolvar = false;

public static int rvint;
public static int tab = 1;

public static void initial ()
{ boolean ex = false;
try{
String temp = "";
String ext = "";
for(int i = 0; i < output.length(); i++)
{
if (output.charAt (i) == '.")
ex = true;
if (lex)
temp = temp + output.charAt(i);
else
ext = ext + output.charAt(i);
}
if (ext.equals(".xf"))
{

42

classname = temp;

temp = temp + ".java";

output = temp;

writer = new FileWriter (output);

bu = new BufferedWriter (writer);

fileOut = new PrintWriter (bu);

}
else
{

System.out.println ("WPSM exception: Input File in
incorrect format. WPSM only accepts .xf files\nSorry! error(s) is/are found, WPSM
compiling process aborted.");

System.exit (0);

}
}
catch (IOException e2)
{
System.out.println ("WPSM exception: there was an error with the
output file\nSorry! error(s) is/are found, WPSM compiling process aborted.");
}
}

public static void insert (String x, String value)
{
Variable temp = new Variable(x, value);
templl.insert (temp, itr);
itr.advance() ;

}
public static void printLL ()

LinkedList.printList (templl) ;

public static void outprintLL()

LinkedList.opLL (templl) ;

public static Variable find(String x)
{
Variable temp = new Variable (x);
itr = templl.find(temp);
if (! (itr.retrieve() == null))
{
}
else
{

System.out.println ("WPSM exception: The variable " + x + " that
you are trying to access has not been initialized\nSorry! error(s) is/are found, WPSM
compiling process aborted.");

System.exit (0) ;

}

return itr.retrieve();

}

public static void finsert (String x)
{
finsert(x, "");

}

public static Variable finsert(String x, String wvalue)
{

LinkedListItr itr2 = itr;

Variable temp = new Variable(x, value);

itr2 = templl.find(temp);

if (! (itr2.retrieve() == null))
{
itr2.retrieve () .replaceval (value) ;
}
else
{

insert (x, value);

}

return itr2.retrieve();

43

public static int index (String ind)
{
int index;
int temp = ind.length();
char[] tempchar = new char[temp - 1];

for(int 1 = 1; i < temp; i++)
{
int temp2 = i-1;
tempchar[temp2] = ind.charAt(i);
}
index = Integer.parselnt (String.valueOf (tempchar));
return index;

}

public static String conv(String str)
{
int temp = str.length();
char[] tempchar = new char[temp-1];

for(int i = 1; i < temp; i++)
{

int temp2 = i-1;

tempchar[temp2] = str.charAt(i);
}

return String.valueOf (tempchar) ;
}

public static void println(String output)

fileOut.println (output) ;

public static void print(String output)

fileOut.print (output) ;

public static void close()
{

fileOut.close();
}

public static void printtab ()
{
for(int i = 0; i < tab; i++)
{
print ("\t");
}
}

public static String add(String x, String vy)
{ if (x.equals (new String("")) || y.equals(new String("")))
{ return x + y;
ilse if (isInt(x) && isInt(y))
{ int temp = Integer.parselnt(x) + Integer.parselnt(y);
return temp + "";

return x + y;

}

public static String sub(String x, String vy)
{
if(isInt(x) && isInt(y))
{
int temp = Integer.parselnt(x) - Integer.parselnt(y);
return temp + "";
}

else if (isInt(x))

44

{

System.out.println ("WPSM exception: Trying to subtract the
string " + y + " from an integer\nSorry! error(s) is/are found, WPSM compiling process
aborted.");

System.exit (0) ;

return "";

}
else if (isInt(y))
{

System.out.println ("WPSM exception: Trying to subtract an
integer from the string " + x + "\nSorry! error(s) is/are found, WPSM compiling
process aborted.");

System.exit (0);

return "";

}
else
{

System.out.println ("WPSM exception: Trying to subtract the
string " + y + " from the string " + x + "\nSorry! error(s) is/are found, WPSM
compiling process aborted.");

System.exit (0);

return "";

}

public static String mul (String x, String y)
{
if(isInt(x) && isInt(y))
{
int temp = Integer.parselnt(x) * Integer.parselnt(y);
return temp + "";
}
else if (isInt(x))
{

System.out.println ("WPSM exception: Trying to multiply the
string " + y + " with an integer\nSorry! error(s) is/are found, WPSM compiling process
aborted.") ;

System.exit (0) ;

return "";

}
else if (isInt(y))
{

System.out.println ("WPSM exception: Trying to multiply an
integer with the string " + x + "\nSorry! error(s) is/are found, WPSM compiling
process aborted.");

System.exit (0) ;

return "";

}
else
{

System.out.println ("WPSM exception: Trying to multiply the
string " + y + " with the string " + x + "\nSorry! error(s) is/are found, WPSM
compiling process aborted.");

System.exit (0) ;

return "";

}

public static boolean isInt (String x)
{
try
{
Integer.parselnt (x);
return true;

}

catch (Exception e)

{

return false;

}

45

Variable.java

public class Variable

{
String name;
String value;

public Variable (String nam)

{

name = nam;

}

public Variable (String nam, String val)
{

name = nam;

value = val;

}

public boolean isInt ()
{
try
{
Integer.parselnt (value);
return true;
}
catch (Exception e)
{

return false;
}
}

public int getintVval()

return Integer.parselnt (value);

public String getstringVal ()

return value;

public String toString()
{

return name;

}

public boolean equals (Variable x)
{

return name.equals (x.name) ;

}

public void changelInt (int x)

{
int temp = Integer.parselnt (value);
temp += x;
value = String.valueOf (temp) ;

}

public void replaceVal (String val)
{

value = val;

}

public void replaceval (int wval)
{
value = "" + val;

}

public boolean valequals(String s)
{
if (value.equals(s)
return true;
else
return false;

46

public boolean 1t (int x)
{
1if (isInt())
{
if (getintval ()< x)
return true;

else
return false;

}
else
{

System.out.println(name + " is not an integer wvalue, and cannot

be compared to int " + x);
System.exit (0) ;

return false;

}

public boolean gt (int x)
{
if (isInt())
{
if (getintval()> x)
return true;

else
return false;

}
else

{

System.out.println(name + " is not an integer value, and cannot

be compared to int " + x);
System.exit (0) ;
return false;

}

public boolean lte(int x)
{
if(isInt())
{
if (getintval ()<= x)
return true;

else
return false;

}
else

{
and cannot

System.out.println(name + " is not an integer value,
"o+ ox);

System.exit (0) ;

return false;

be compared to int

}

public boolean gte (int x)
{
if (isInt())
{
if (getintval () >= x)
return true;

else
return false;

}

else

{

is not an integer value, and cannot

System.out.println (name + "

be compared to int " + x);
System.exit (0);

return false;

}

public void dec(String x)

{
if(isInt())

{

if (Functions.isInt (x))

47

value = String.valueOf (getintVval() -

Integer.parselnt (x));
else
{

System.out.println ("WPSM exception: attempting to
subtract a string from int $" + name + "\nSorry! error(s) is/are found, WPSM compiling
process aborted.");

System.exit (0) ;

}
else
{

System.out.println ("WPSM exception: $" + name + " is not an
integer value and cannot be decremented\nSorry! error(s) is/are found, WPSM compiling
process aborted.");

System.exit (0) ;

}
}

public void inc(String x)
{
if(isInt())
{
if (Functions.isInt (x))
value = String.valueOf (getintval() +
Integer.parselnt(x));
else
value = value + x;

else

value = value + x;

XLib.java

[] KKk kK Kk ok Sk kK ok ok ok KK K ok ok ok K Kk ok ok ok kK ok ok ok kK K ok ok ok kK K ok ok ok kK K ok ok ok kK K K ok ok ok kK ok ok k ok kK ok ok ok kK

// XML lib.java Author: Seema Gupta

//

// Library for WPSM

// Creates XML source code file.
//***************‘k******************************‘k****************************
import java.util.StringTokenizer;

import java.io.*;

import java.util.Vector;

public class XLib{
//bufferd reader, writer and printer
public static FileReader fr;
public static FileWriter fw;
public static BufferedReader inFile;
public static BufferedWriter bw;
public static PrintWriter outFile;
public static StringTokenizer tokenizer;

//WPSM variables

public static String in File = "in.txt"; //input file name

public static String out File = "out.xml"; //output file name
public static String delimeter = ","; //delimeter

public static String RT = "RT"; //root name

public static String RN = "RN"; //element name

public static Vector RA = new Vector(); //attribute vector
public static Vector RV = new Vector(); //record vector

public static String prolog = "<?xml version=\"1.0\"?2>"; //prolog
public static String comments = ""; //comments

public static String line = ""; //empty line

public static int count = 0; //count variable

public static boolean isCreated = false; //openFile()

public static boolean isCreated2 = false; //created first record

public static File inF, outF;

48

/**
* Check to see if the input file specified by the user exists.
*/
public static void setFN() {
setFN (in File);
}

/**
* Check to see if the input file specified by the user exists.
*
* @param inputFile the name of the input file
*/
public static void setFN(String in) {
//System.out.println("setInFileName: "+in);

if (!isCreated) {
inF = new File(in);

if (!inF.exists()){
System.out.println ("WPSM exception: Input File in incorrect format. In
File: File "+in+" does not exist.\nSorry! error(s) is/are found, WPSM compiling
process aborted.");

System.out.println ("WPSM Hint: If you don't declare the input file and
output file names first there is a chance that the default values of \"in.txt\" and
\"out.xml\" might be used.");

System.exit (0) ;

}
else(
in File = in;
}
}
else
System.out.println ("WPSM WARNING: User cannot change in file name after
user has created first record");

}

/‘k*
* @return the input file name
*/
public static String getEN() {
return in_File;

}

/‘k*
* Check to see if the output file specified by the user exists
*/
public static void setOFN() {
setOFN (out_File);
}

/**
* Check to see if the output file specified by the user exists
*
* @param outFile the name of the input file
*/
public static void setOFN(String outputFile) {
if (!isCreated) {

boolean foundfile = true;
boolean ex = false;
outF = new File (outputFile);
int 1 = 1;

String tempout = outputFile;
if (outF.exists())

foundfile = false;
else

out _File = outputFile;

while (!foundfile)
{
String out = "";
String ext = "";
for(int j = 0; j < outputFile.length(); Jj++)

49

if (outputFile.charAt (j) == "'.")

ex = true;
if (lex)

out = out + outputFile.charAt(j);
else

ext = ext + outputFile.charAt(j);

ex = false;

out += 1i;
out += ext;
it++;

outF = new File (out);
System.out.println ("WPSM WARNING: Out File: File "+tempout+"
already exists. Trying to use alternative " + out);
tempout = out;
if (loutF.exists())
{
foundfile = true;
out File = out;
System.out.println ("WPSM WARNING: Out File: Found
alternative " + out);
}
}
else
System.out.println ("WPSM WARNING: User cannot change out file name after
user has created first record");

}

/**
* @return the output file name
*/
public static String getOFN () {
return out_File;

}

/**
* Sets the delimeter to be used for parsing the input file.
*
* @param delim the delimeter to use
*/
public static void setDelimeter (String delim) {
if (!isCreated) {
delimeter = delim;
}
else
System.out.println ("WPSM WARNING: User cannot change delimeter after user
has created first record");

}

/**
* @return the delimeter
*/
public static String getDelimeter () {
return delimeter;

}

/‘k*
* Sets the root name for the XML file.
* The default value for root (RT) is "root".
*
* @param rootName the name for root
*/
public static void setRT (String rootName) {
if (!isCreated?2) {
RT = rootName.replaceAll (" ", " ");
}
else
System.out.println ("WPSM WARNING: User cannot change RT after user has

created first record");

50

/**
* @return the root name
*/
public static String getRT () {
return RT;

}

/**
* Sets the element name for the XML file.
* The default value for element (RN) is "element".
*
* @param elementName the name for the element
*/
public static void setRN(String elementName) {
if (!isCreated2)
RN = elementName.replaceAll (" "," ");
else
System.out.println ("WPSM WARNING: User cannot change RN after user has
created first record");

}

/**
* @return the element name
*/
public static String getRN() {
return RN;

}

/**
* Internal method called by miqg.
* Opens buffered readers and writeres.
*/
public static void openFile () {
if (!isCreated) {
isCreated = true;

try f

fr = new FileReader (in File);
inFile = new BufferedReader (fr);
fw = new FileWriter (out File);
bw = new BufferedWriter (fw);
outFile = new PrintWriter (bw);

}

catch (FileNotFoundException exception) {
System.out.println ("WPSM exception: The file "+in File+" was not
found\nSorry! error(s) is/are found, WPSM compiling process aborted.");
System.exit (0) ;
}
catch (IOException exception) {
System.out.println ("WPSM exception: " + exception +"\nSorry! error(s)
is/are found, WPSM compiling process aborted.");
}
}

else
System.out.println ("WPSM WARNING: Trying to open a file twice");
}
/**
* Closes the output XML file file readers and writers.
*/

public static void closeFile() {
if (isCreated) {
try{
if (isCreated2)
outFile.println ("</"+RT+">");
else

51

System.out.println ("WPSM WARNING: File was opened but no records were
created: "+out File);

inFile.close();

outFile.close();

System.out.println ("WPSM Message: Output file has been created:
"+out File);
}
catch (FileNotFoundException exception) {
System.out.println ("WPSM exception: The file "+out File+" was not
found\nSorry! error(s) is/are found, WPSM compiling process aborted.");
System.exit (0) ;
}
catch (IOException exception) {
System.out.println ("WPSM exception: " + exception +"\nSorry! error(s)
is/are found, WPSM compiling process aborted.");
}
isCreated = false;
}
else
System.out.println ("WPSM WARNING: No out file was created because no records
were created.");

}

/**
* Sets the attributes for the output XML file.
*
* @param attri Vector containing the attributes
*/
public static void setRA (Vector attri) {
//System.out.println("setRA: isCreated2"+isCreated2);
String atmp = "";
if (!isCreated2) {
//System.out.println ("Attri "+attri);

for (int i = 0; 1 < attri.size(); i++){
atmp = ""+attri.elementAt (1) ;
atmp = atmp.replaceAll ("™ ", " ");

attri.setElementAt (atmp,i);

}
RA = attri;

//System.out.println ("RA " +RA);
}
else

System.out.println ("WPSM WARNING: User cannot change RA after user has

created first record.");

}

/**
* Sets a particular index in the attribute vector.
*
* @param attri String to add
* @param index the index to add it
*/
public static void setRA(String attri, int index) {
if (!isCreated?2) {
if (index < RA.size()) {
attri = attri.replaceAll ("
RA.setElementAt (attri, index);
}
else(
System.out.println ("WPSM exception: RA Error - RA size is
"+RA.size ()+"; User trying to access RA["+index+"]\nSorry! error(s) is/are found, WPSM
compiling process aborted.");
System.exit (0) ;

woomomy .

}
}
else
System.out.println ("WPSM WARNING: User cannot change RA after user has
created first record.");

}

/**
* Appends to the attribute Vector. (User can append only to the end of
* the attribute Vector.)

52

*

* @param attriName the name of the attribute to be appended
*/
public static void addRA (String attriName) {
if (!isCreated2)
RA.addElement (attriName.replaceAll (" ", " _"));
else
System.out.println ("WPSM WARNING: User cannot change RA after user has
created first record.");

}

/**
* @return the attribute vector
*/
public static Vector getRA() {
return RA;

}

/**
* @return the attribute value
*/
public static String getRA (int n) {
if (RA.size() > n)
return RA.elementAt (n)+"";
else(
System.out.println ("WPSM exception: RA Error - RA size is
"+RA.size ()+"; User trying to access RA["+n+"]\nSorry! error(s) is/are found, WPSM
compiling process aborted.");
System.exit (0) ;
return null;

/**
* Sets a particular index in the record vector.
*
* @param value String to add
* @param index the index to add it
*/
public static void setRV(String value, int index) {
if (index < RV.size())
RV.setElementAt (value, index);
else(
System.out.println ("WPSM exception: RV Error: RV size is "+RV.size()+";
User trying to access RV["+index+"]\nSorry! error(s) is/are found, WPSM compiling
process aborted.");
System.exit (0) ;
}

/**
* Sets the RV values.
*
* @param values Vector containing the record values
*/
public static void setRV (Vector values) {
RV.removeAllElements () ;
RV = wvalues;

/**
* Appends to the record Vector.
*
* @param recordValue the value of the record to be appended
*/
public static void addRV (String recordValue) {
RV.addElement (recordValue) ;
}

53

/**
* Deletes entry in the record Vector.
*
* @param recordValue the name of the value to be deleted
*/
public static void removeRV (int index) {
if (index < RV.size())
RV.removeElementAt (index) ;

else {
System.out.println ("WPSM exception: RV Error: RV size is "+RV.size()+";

User trying to access RV["+index+"]\nSorry! error(s) is/are found, WPSM compiling
process aborted.");
System.exit (0);
}

/**
* Deletes entry in the attribute Vector.
*
* @param index the index to remove
*/
public static void removeRA (int index) {
if (!isCreated2) {
if (index < RA.size())
RA.removeElementAt (index) ;
else(
System.out.println ("WPSM exception: RA Error - RA size is
"+RA.size ()+"; User trying to access RA["+index+"]\nSorry! error(s) is/are found, WPSM
compiling process aborted.");
System.exit (0) ;
}
}
else(
System.out.println ("WPSM WARNING: Can't make changes to RA after record
have been created");
System.exit (0) ;

/**
* @return the record vector
*/
public static Vector getRV () {
return RV;
}

/‘k*
* @return the record value
*/
public static String getRV (int n) {
if (RV.size() > n)
return RV.elementAt (n)+"";

else{
System.out.println ("WPSM exception: RV Error: RV size is "+RV.size()+";

User trying to access RV["+n+"]\nSorry! error(s) is/are found, WPSM compiling process
aborted.");

System.exit (0) ;

return null;

/**
* @return RV's length
*/
public static int getRVSize () {
return RV.size();

}

/**
* @return RA's length
*/
public static int getRASize () {
return RA.size();

54

/**
* Reads a line from the input file.
*
* 1l @param lineNum the number of the line to read
* @return the string that is read
*/
public static String readLine () {
if (!isCreated) {
System.out.println ("WPSM WARNING: ReadLine: No Output File set, using

[

default");

setEFN () ;

setOFN () ;

openFile () ;

}

tryf
if ((line = inFile.readLine()) != null)
line = line;

else
line = "EOF";

}
catch (FileNotFoundException exception) {
System.out.println ("WPSM exception: The file "+in File+" was not
found.\nSorry! error(s) is/are found, WPSM compiling process aborted.");
System.exit (0);
}
catch (IOException exception) {
System.out.println ("WPSM exception: " + exception + "\nSorry! error(s)
is/are found, WPSM compiling process aborted.");
System.out.println (exception);
System.exit (0) ;

}

return line;

/**
* Checks whether a specific line is EOF.
*

* @return true if line is EOF
*/
public static boolean isEOF (String inLine) {
if (inLine == null)

return true;

else
return false;

}

public static void createRecord (String record) {
createRecord (toVector (record)) ;

}

public static void createRecord() {
if (!isCreated) {
setFN();
setOFN () ;
openFile () ;
}
if (!isCreated2) {
outFile.println (prolog);
outFile.println ("<"+RT+">");

isCreated2 = true;
}
if (RA.size() == 0){
System.out.println ("WPSM exception: Create Rocord - RA can't be
null\nSorry! error(s) is/are found, WPSM compiling process aborted.");

System.exit (0);

}
else if (RV.size() == 0)
System.out.println ("WPSM WARNING: Create Rocord - Cannot create null

record; create ignored");

55

else(
if (RA.size () != RV.size())
System.out.println ("WPSM WARNING: Create Record - Attribute and record
size does not match up.");

outFile.print ("<"+RN+" ");
for(int i = 0; 1 < RA.size(); i++){
if (i < RV.size())
outFile.print (RA.elementAt (i) +"=\""+RV.elementAt (i)+"\" ");
else
outFile.print (RA.elementAt (i)+"=\" \" ");
}
outFile.println ("/>");

public static void createRecord (Vector values) {
if (!isCreated) {
setFN() ;
setOFN () ;
openFile();
}
if (!isCreated?2) {
outFile.println(prolog);
outFile.println ("<"+RT+">");
isCreated2 = true;
}
if (RA.size() == 0){
System.out.println ("WPSM exception: Create Rocord - RA can't be
null\nSorry! error(s) is/are found, WPSM compiling process aborted.");
System.exit (0);
}
else if (values.size() == 0)
System.out.println ("WPSM WARNING: Create Record - Cannot create null record;
create ignored.");
else(
if (RA.size() != values.size())
System.out.println ("WPSM Warning: Create Record - Attribute and record
size does not match up.");

outFile.print ("<"+RN+" ");

for(int 1 = 0; i < RA.size(); 1i++){
if (i < values.size())
outFile.print (RA.elementAt (i) +"=\""+values.elementAt (i)+"\" ");
else
outFile.print (RA.elementAt (i)+"=\" \" ");

}
outFile.println ("/>");

public static Vector readToVector () {
return toVector (readLine());

}
/**

* Changes a string to a Vector based on the delimeter.
*
* @param inputStr the string to be parsed
* @return the Vector of the parsed values
*/
public static Vector toVector (String inputStr) {
Vector tmp = new Vector();

String tmpS = "";

String test = delimeter+""+delimeter;
String test2 = " "t+delimeter+" "+delimeter;
String test3 = "\""+delimeter+"\"";

String test4 = "&hello";

inputStr = inputStr.replaceAll (test, test2);

inputStr = inputStr.replaceAll (test3, testd);

56

inputStr = inputStr.replaceAll ("\"", ""); //take away the quotes that are not
around commas with ""

tokenizer = new StringTokenizer (inputStr, delimeter);
while (tokenizer.hasMoreTokens()) {
tmpS = tokenizer.nextToken();

tmpS = tmpS.replaceAll (test4, ",");
tmp.addElement (tmpS) ;

return tmp;

}

public static String toString(Vector v) {

String str = "";
for (int i= 0; (i+l) < v.size(); i++)
str += v.elementAt (i) + delimeter;
str += v.elementAt (v.size() - 1);

return str;

// Additions to WPSM
// not integrated in front-end yet

/**
* Sets the prolog.
* How to check if correct format?
*
* @param prologNew the new prolog value
*/
public static void setProlog (String prologNew) {
if (!isCreated2) {
// need to check if it is in correct format
prolog = prologNew;
}
else
System.out.println ("User cannot change prolog after user has created first
record") ;

}

/**
* @return the prolog
*/
public static String getProlog() {
return prolog;

}

/**
* Adds comments to the XML output file.
*
* @param comment the comments to be added to the output XML file
*/
public static void addComment (String comment) {
if (!isCreated?2) {
outFile.println("<! "+comment+" !>");
}
else
System.out.println ("User cannot add comments after user has created first
record") ;

}

/**

* @return the comments

*/

public static String getComment () {
return comments;

}

57

Appendix D.
Test Plan: Checking for dependencies

Basic Steps:
//only before openFile();
1 - setFN("in.txt") || setFN();
2 - setOFN ("out.txt") | setOFN();

/loptional
3 - setDelimeter (",");

4 - openFile();

//can set before or after openFile() depending on how you set it

//if reading 1st line of file, must openFile() first

5a ?7setRN();//or should we allow the user to change RN at anytime?
5b - setRA();

5¢ - setRT();

//optional only after openFile() and setRA()
6 - createRecord(); //can setRV first or not; setRV() can be used anytime

//must do to end program
7 - closeFile();

//helping methods only after openFile()
1 ?readLine()

2 ?readToVector()

3 7isEOF()

//other

1 ?all get methods
2 MtoVector()

3 2toString()

//new features not supported by front-end
//should be done before openFile()

1 ?setProlog(); getProlog();

2 ?setComments(); getComments();

58

