
Compiling Esterel into Better Circuits
Jia Zeng

Department of Computer Science
Columbia University, New York

Abstract
Producing efficient circuits from a high-level language
such as Esterel remains a problem. Sparse state coding
requires many more latches used than minimum and
waste of reachable state space, while tight state
encoding produces slow circuits due to the cost of
encoding and decoding.
 This paper presents an algorithm to generate small
and fast circuitry for Esterel. There are three main
parts of the algorithm: state assignment, hardware
synthesis, and circuit optimization. The technique is
based on Program Dependence Graph. It uses heuristic
search in coding space, computes the cost and adjusts
until finding a compromise point on latch/logic
tradeoff.
 The algorithm will be used to compile Esterel into
small circuits that meet a timing constraint.

1 Introduction
Esterel is a high-level language designed for real-time
systems. It supports high-level control constructs such
as concurrent composition, preemption, and exceptions.
This aspect makes Esterel a more challenging language
to translate into circuitry, but also enable aggressive
optimizations because the compiler is able to gain a
better understanding of the program�s behavior.

State assignment to Esterel is based on the Program
Dependence Graph (PDG) of Esterel. Baxter and
Bauer present it in [9]. It is based on the concept of
control flow, and preserves all information of an
original Esterel program. Esterel supports implicit state
machines through explicit and implicit pause
statements that delay for a cycle, such as the await
statement. States sustain and transfer only between
these statements. So we assign states for each of them.
Figure 1 gives an example for PDG.

Heuristic search is used in the algorithm to find an
efficient state coding. Three main kinds of coding are
used in the searching space. First is Berry�s [1] one-hot
encoding. It produces fast circuits while gives much
redundant state space. Second is Edwards�s [2,4]
group-hot-by-level encoding. It shares latches between
those decision nodes whose parents are in the same
level but not parallel. Third is some variant of the
former two encodings. It shares latches between the
decision nodes in some levels, but not for all levels
where sharing is possible. In other levels, it still keeps
one-hot encoding for the nodes.

We use heuristic search in the state encoding space

until we find a resolution with the fewest latches under
the requirement, or until the search space is exhausted.
We start from one-hot encoding. If it can�t meet the
requirement given, we fail and return. Else, we�ll try
variant coding means to delete sharable latches. Every
time after re-encoding, the cost of the circuit is
re-evaluated. If it is higher than required, the new
coding will be thrown away and the former code will
be returned. Or we�ll repeat the process until we
exhaust the searching space. Thus we find the most
efficient coding that meets the cost requirement.

The Esterel hardware synthesis is straightforward
when the coding has been chosen.

There are two parts of circuit optimization:
combinational optimization and sequential
optimization. This paper is concentrate on the
sequential optimization. And in fact, the sequential
optimization has been done at the stage of state
encoding before generate real circuits. SIS, the
standard public-domain optimizer, will be used to for
the combinational optimization after generating
circuits.

2 Related Work
The classic state assignment is based on Finite State
Machine. Hachtel and Somenzi [6] described synthesis
of finite state machines. It uses minimization of
incomplete specified machines to get reduced
reachable states.

Villa and Sangiovanni-Vincentelli [7] present
algorithms used in NOVA for optimal state assignment
of FSMs. It is based on the state code adjacency
concept but more efficient and flexible. NOVA
represents constraint satisfaction as a graph-embedding
problem. It uses heuristic search to resolve this
problem. Its best strategy is �iohybrid_code�, which
produces results with quality comparable to the results
of the maximum adjacent method. Its core algorithm is
�ihybrid_code�. The set of input constrains is
partitioned into satisfied constrain set (SIC) and
rejected constrain set (RIC) at the beginning. The
algorithm first gives the coding with minimum length
under the satisfied constrains. Then it increases the
embedding cube to satisfy the RIC within the encoding
space that is specified by the user. The iohybrid_code
strategy takes similar steps as in ihybrid_code but also
takes the output constrains into consider. Generally
speaking, output constrains are in lower priority to
input ones in this strategy.
 Devadas, Ma, Newton, and Sangiovanni-Vincentelli

[8] present a method called MUSTANG that is one of
the earliest multi-level state assignment methods. It
used the state code adjacency concept to reach the aim
of maximizing the size of number of common cubes. It
build an attraction graph with weighted edges. An
edge�s weight is increased if it links to the common
fanout and fanin states. MUSTANG was used to help
MIS logic synthesis system reducing the number of
product terms or literals needed to implement the
next-state and output functions.
 Berry first outlined the translation of Esterel into
circuitry in 1992 [1], refined later to cover
reincarnation. It generates a sub-circuit for each
statement, and registers only for pause - the kernel
unit-delay statement. So each leaf state is encoded by
one-hot coding. In that case, encoding and decoding
circuits are trivial. But it uses many latches and results
reachable state space redundancy. Later, Sentovich,
Toma and Berry [3,5] described the technique for
reducing the number of latches. They rely on
computing the reachable state set implicitly using
BDDs, then re-synthesizing the circuit using this
knowledge to remove sequential redundancies. The
whole program is taken as one state machine.

In the compiler we are building, more than one state
machine are assigned in different level. It is necessary
especially for parallel branches. We can share latches
between sequential branches but need to avoid parallel
ones.
 Edwards [2] proposed three key means to advance
Esterel hardware synthesis. First is the CFG. It takes a
totally new structural translation to Esterel. Calculating
control dependence in the graph, it removes the
redundant circuit. That is much more efficient than
removing by analyzing the circuit.

Second is a better state encoding. That technique he
proposed chooses states encoding at a high level,
providing much greater flexibility and larger encoding
space to choose from.

Third is to use the don�t-care information in logic
synthesis. It gives more flexibility to the
implementation and helps to generate high-quality
circuits.

7 Bibliographies
[1] Gerard Berry. Esterel on hardware. Philosophical
Transactions of the Royal Society of London. Series A,
339:87-103, April 1992. Issue 1652, Mechanized
Reasoning and Hardware Design.
[2] Stephen A. Edwards. High-level synthesis from the
synchronous language Esterel. In Proceedings of the
International Workshop of Logic and Synthesis
(IWLS). New Orleans, Louisiana, June 2002.
[3] Gerard Berry. Efficient latch optimization using
exclusive sets. In Proceedings of the 34th Design
Automation Conference, pages 8-11, Anaheim,

California, June 1997.
[4] Stephen A. Edwards. An Esterel compiler for large
control-dominated systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems 21(2), February 2002
[5] Ellen M. Sentovich, Horia Toma, Gerard Berry.
Latch optimization in circuits generated from
high-level descriptions. ICCAD'96, November 1996.
[6] Gary D. Hachtel, Fabio Somenzi. Logic Synthesis
and Verification Algorithms. Keluwer Academic
Publishers. 1996.
[7] Tiziano Villa, Alberto Sangiovanni-Vincentelli.
NOVA: State Assignment of Finite State Machines for
Optimal Two-Level Logic Implementations. In The
Proceedings of the 26th ACM/IEEE Design
Automation Conference, pages 327-332, June 1989.
[8] S. Devadas, B. Ma, R. Newton, and A.
Sangiovanni-Vincentelli. MUSTANG: State
Assignment of Finite State Machines Targeting
Multi-level Logic Implementations. IEEE Transactions
on -Computer-Aided Design, vol. 7, no. 12, December
1988.
[9] W. Baxter and H. R. Bauer, III. The program
dependence graph and vectorization. In Proceedings of
the Sixteenth Annual ACM SIGACT/SIGPLAN
Symposium on Principles of Programming Languages,
Austin, TX, 1989.

Figure 1 PDG for an example program

abort
[
 await A; await B
||
 await C
]

when D;
pause;

S1

S1=3 S1=3D

S1=2S3

1

S2=1

S2

S2=2

A

1

B

2

S2=3

3

S2=2 S2=3

1 2

3

S3=2

2

C

S3=1 S3=2

