Implementing a Domain Specific Language for Network Drivers

Russell Yanofsky —r ey4@ol unbi a. edu
Department of Computer Science, Columbia University

Abstract — This report consists of an
overview of previously described and
implemented Domain Specific Languages
(DSLs) for writing device drivers. It
discusses some of the benefits and
drawbacks of these approaches and shows
how a C++ library can be used instead of
a standalone language to achieve many of
the same goals.

I. INTRODUCTION

Network device drivers are essentially
glue code that pass instructions and data
between a low-level network hardware layer
and a higher level networking interface
determined by the operating system.
Network drivers for a given operating
system tend to have a lot of code in
common. For one thing, their structure will
be similar, because they all implement the
same packet delivery API. Moreover, they
all use similar bit-manipulation techniques
in order to send and receive information
from hardware registers. These pieces of
code which device drivers have in common,
asynchronous communication and register
oriented bit manipulation, happen to be
things that are difficult to express in a
generic way in C, the language in which
most device drivers are written. Domain
Specific Languages offer a way to write
device driver code in a more expressive
way. Domain Specific Languages (DSLs)
designed for use in network drivers, or for
hardware drivers in general allow common
code to be factored out, and low-level code
to be automatically generated, so that driver
writers can focus on details specific to their
piece of hardware. Of the domain specific
languages that have been implemented for
this purpose, all are standalone tools which

generate C code. None of these tools are
widely used, and they suffer from several
drawbacks. They require developers to learn
a new syntax or GUI and they do not offer
general programming-language features, so
they can be difficult to extend. Also,
because they must be executed, they
introduce another dependency in the build
process. This paper will describe an
alternate approach, in which domain-
specific code generation is implemented in a
C++ library. C++ is a general purpose
programming language which has some
meta-programming facilities which allow it
to mimic features of many DSLs. The first
part of this paper describes the features
offered by existing DSLs, and the second
describes some C++ techniques that can be
used to build a library for implementing
device drivers.

II. RELATED WORK

Consel et al [I] designed and
implemented a language called Devil
(DEVice Interface Language) which
generates low level driver code for use in
Linux and SunOS. With the Devil language,
a programmer specifies how to access
hardware registers for a device, and
identifies bit ranges within those registers
which can be treated as distinct variables.
The Devil compiler then generates a series
of C functions which read and write to the
variables, and the driver code can call these
functions to receive status information and
send commands to hardware.

Since reads and writes to hardware
registers have side-effects, Devil allows the
programmer to specify conditions under
which variables should be cached. And, to
allow for cases when many variables need to

be read of written at the same time, Devil
allows variables to be grouped into
structures, generating functions to read and
write entire structures at once.

To deal with complicated hardware
schemes for accessing registers, the driver
writer may specify actions that will occur
before and after register reads and writes.
The more complicated access schemes can
make use of private variables in actions,
virtual registers, which map to other
registers, and parameterized registers that
take integral parameters for use in pre and
post actions.

One of the major goals of Devil, aside
from making driver code easier to read and
write, is to provide safety. Each variable that
the programmer declares can be constrained
by a series of enumerated constants or by a
bitmask. When a value is read or written
which does not satisfy the constraints an
error message can be printed at runtime.
(Due to C’s weak type system, Devil cannot
always ensure that C code accessing
variables is correct)

Manolitzas [2] describes a DSL for
implementing Linux network drivers. His
language is essentially to be a superset of
Devil. But instead of being an interface
language which generates C helper
functions, it is an imperative language which
can be used to generate an entire driver. The
language requires the driver writer to specify
at least 5 functions: init, open, transmit,
receive, and stop, as well as an interrupt
handler. The functions and the handler are
written in a Pascal-like imperative language
that has special features for reading and
writing to hardware variables, managing
memory, and performing synchronizations.
Unfortunately, he does not describe the
features for memory management and
synchronization in any detail.

DSLs need not be text based. Compuware
Driverworks provides a set of GUIs that can
generate driver stub code for Windows

platforms. The purpose of this product is to
simplify the portions of driver code that
interact with the operating system, rather
than the parts that interact with the
hardware.

The C++ library described in this paper
attempts to provide developers with simpler
ways of accessing the hardware in the same
way that Devil does.

III. C++ TECHNIQUES

In some sense, solving a problem with
C++ is the exact opposite of solving a
problem with a DSL. DSLs are small,
limited purpose languages while C++ is a
huge, general purpose one. But while these
differences may mean a lot to the people
implementing domain specific solutions
(since developing a C++ library is a
different process than writing a compiler),
the end goal is nearly the same. The ultimate
goal is to allow the end user to write a small
amount of expressive code to replace large
amounts of repetitive or complicated code.

The use of C++ Libraries to implement
domain specific solutions is nothing new.
Blitz++ and POOMA, two pioneering C++
numeric libraries that perform domain
specific optimizations on high level numeric
code are now more than 5 years old. Other
code-generating C++ libraries like parser
generators and finite state machine
emulators are being actively developed. By
comparison this library, which generates
instructions to access registers from variable
accesses, is simple and even straightforward.

Past efforts at building specific DSL-like
libraries in C++ have led to the discovery of
generally useful techniques for C++ code
generation. Czarnecki and Eisenecker [3]
describe many of these techniques in detail,
in the context of how they can be used to
emulate features in real DSLs.

The rest of this section will provide an
overview of how this library for writing
device drivers will be used and of two C++

/| device

devi ce | ogitech_busnmouse (base :
port @{0..3})

{

/1 index register
typedef Register<2, 8,
Li st <ReadOnly, Mask. ..

bit[8]
> > | ndexReg;

/] index variable
typedef Variabl e<2, AtRegister<lndexReg, 6, 5>

/1 index register
register index_reg = wite base @ 2,

mask ' 1..00000' bit[8]; > | ndex;
/1 index variabl e Il registers for low and high bits
vari abl e i ndex = index_reg[6..5] int(2); typedef |ndexedRegi ster<0, |ndex, 2, 8,
Mask... > > Y _Low,
/1 registers for low and high bits typedef |ndexedRegi ster<0, |ndex, 3, 8,
register y low = read base @0, pre Mask... > > Y_High;
{index =2} : bit[8], mask "**** _ . ';
register y_high = read base @0, pre typedef Variabl e<8, List<
{index =3} : bit[8], mask "...*...."; At Regi ster<Y_Low, 3, 0>,

At Regi ster<Y_High, 3, 0> > > DY;
/1 dy variable
variable dy = y_high[3..0] # y_low3..0],
volatile : signed int(8);

Figure 1. The left column shows the Devil hardware description for a Logitech mouse driver. The right column shows the

same description as a series of C++ type definitions. Example based on [1]

techniques that will be used in the library’s
implementation: typelists and the “curiously
recursive template” pattern.

Registers and hardware variables which
are described using language constructs in
Devil will be described with type
declarations in C++. Figure 2 shows some of
these the C++ type declarations and the
equivalent Devil statements which partially
describe the hardware interface to a
Logitech mouse. Each variable and register
that is used to interact with the hardware
corresponds to C++ type which is specified
by the user by parameterizing generic
Variable and Register template
classes. The resulting Variable types can be
instantiated as objects which can be read
from or assigned to. There should be no
reason to ever instantiate a Register type.

Many of the parameters for the
Vari abl e and Register Template
classes are lists of arbitrary length, instead
of individual values. These lists are called as
typelists. The most comprehensive and easy
to understand description of typelists was
written by Alexandrescu in [4], but typelists
are also mentioned in [1]. Typelists are

made up of a chain of Node types where
ecach Node type contains an arbitrary type
and the type of a successor Node. The last
node has a successor type of Nul | , where
Null is just a special placeholder class.
Figure 2 shows the specific definition for the
Nul I type and the Node template class.
Figure 3 shows how to declare a list of three
types (int, signed int, unsigned int) using
Node and Null classes. This notation is
verbose and cumbersome, because it
requires that template parameters be deeply
nested. It is possible to provide a shorthand
syntax using a template class that accepts a
variable number of parameters. This
shorthand is also demonstrated in Figure 3.

struct Nul | ;

t enpl at e<t ypenane T,
struct Node
{
typedef T type;
typedef NEXT next;

typenane NEXT>

Figure 2. Node template class and Null types
are used to make typelists.

Direct typelist declaration:

typedef Node<int, Node<signed int,
Node<unsigned int, Null> > >

MyLi st ;
Shorthand typelist declaration

typedef List<int, signed int,
unsi gned int> MyList;

Figure 3. How to declare a list of three
types, using the Nul | and Node classes
directly, and by using Li st shorthand.

The real power of typelists comes from
the fact that they can be manipulated and
used to generate classes and values using
compile-time algorithms. Figure 4 shows a
simple algorithm class called Lengt h that
determines how many elements are in a
typelist passed to it as a parameter. The
length template class is specialized for the
Null type to give a length of 0. It is
specialized for any Node type to give a
length of 1 plus the length of the Node’s
successor list. So when it is passed MyLi st
it will give a length of (1 + (1 + (1+ 0))) = 3.

t enpl at e<t ypenane LI ST>
struct Length;

tenpl at e<>
struct Lengt h<Nul |l >

{
enum { value = 0 };

b

tenpl ate<class T, class U>
struct Lengt h< Node<T, U> >

{
enum { value = 1 + Length<U> };

b

cout << Lengt h<MyLi st>::val ue;

Figure 4. Definition and use of the Length
algorithm.

Length is one of the simplest typelist
algorithms. Other = commonly used
algorithms return classes which inherit from

every type on the list or returned sorted or
filtered versions of lists. There are entire
libraries filled with algorithms for
manipulating typelists, including
Boost::MPL (MetaProgramming Library)
and Loki.

Lists are one type of parameter that can be
passed to Variable and Register template
classes in order to influence their behavior.
Integer values are another type of parameter
that can be passed in. Abstract base classes
are a third type of parameter. In Figure 1,
the abstract base parameters used are
| ndex and Mask.

Abstract base classes are normally able to
call methods on the classes which inherit
from them. By default this works in C++
and some other object oriented languages
through virtual function calls. Virtual
function calls are problematic in this case,
however, because C++ does not support
virtual calls on templated functions.
Additionally, virtual calls only allow
abstract base classes to access their
descendants’ member functions, and not
their internally defined constants and type
definitions. A solution to both of these
problems comes in the “curiously recursive
template” pattern, also known as Barton and
Nackman trick. This trick works by turning
the abstract base class into a template class
which takes the type of the descendant class
as a single parameter. This way, when the
base class needs to call a function on its
descendant, it can cast its t hi S pointer to
the descendant type, and proceed to invoke
the correct method. Figure 5 shows an
example of this technique taken from
Veldhuizen [5].

tenpl at e<cl ass T_| eaftype>
class Matrix {

publi c:
T |l eaftype& asLeaf ()
{ return

static_cast<T | eaftype&(*this); }

doubl e operator()(int i, int j)
{ return asLeaf()(i,j); }

b

class SymetricMatrix :
public Matrix<SymmretricMatrix> {

yo

Figure 5. The curiously recursive template
technique.

! Fabrice Merillon, Laurent Reveillere,

Charles Consel, Renaud Marlet, Gilles
Muller. Devil: An IDL for Hardware
Programming. OSDI 2000, pages 17-30, San
Diego, October 2000.

* Apostolos Manzolitas. A Specific Domain
Language for Network Cards. 2001.
http://www.cs.columbia.edu/~sedwards/clas
ses/2001/w4995-02/reports/apostolos.pdf

> Krzysztof Czarnecki and Ulrich W.
Eisenecker. Generative = Programming.
Addison-Wesley, 2000.

Andrei Alexandrescu. Modern C++
Design: Generic Programming and Design
Patters Applied. Addison-Wesley, 2001.
Techniques for Scientific C++
> Todd Veldhuizen. Techniques for
Scientific C++. Indiana University
Computer Science Technical Report #542,
August 2000.
http://osl.iu.edu/~tveldhui/papers/techniques

