

Basic numerical computation

example: Multidimensional matrix computation

Memory management example: Java primitive type vs. Java Object

- SpecJVM98, SciMark and JkernelMark official benchmarks
- Measure in execution time and memory usage

- Java is widely adopted in embedded system to develop various applications
 - PDA, wireless phone, and game console
- Java is easy to learn and powerful
 - Rich set of library
 - Platform independent
 - Easy integration

- Popular JVM for PDA or Wireless device
 - Sun Microsystems J2ME (KVM)
 - CLDC and MIDP for Palm GS5+
 - IBM J9 VM
 - HP ChaiVM
 - iPAQ PersonalJava (Jeoda)
- C uses Cygwin with PRC-TOOL or CodeWarrior for PDA application development

Related works

- Sosnoski [1][2] Java and C/C++ performance comparison and analysis
 - Java object allocation wastes memory space and takes too long
 - But improvement can be made by using primitive types instead of Java object
 - Use array instead of java.util.Vector
 - Avoid creating new object in large software

- Moreira et al. [3] numerical computation
 - Multidimensional matrix addition and multiplication
 - Java Array incurs overhead of runtime checking.
 - Java multidimensional array is array of arrays (slower indexing)
 - Java outperforms C if Java array runtime checking is disabled

Questions to be answered by end of this project

- Which language has better performance on Palm OS PDA device, Java or C?
- If C is better, how bad is Java's performance on PDA? Is it acceptable performance?
- What improvements can be made to Java to run better on PDA?

Development Environment

- Sony Clie (Palm OS Device)
 - 33MHz
 - 16MB RAM
- Java Development IDE
 - Java wireless toolkit
 - CodeWarrior

Columbia University CS4995-2 Embedded System Project Presentation

Looping

Array Copy

Hashing

String concatenation

Factorial

Conclusion

- Java performance can be improved by fine tune Java program such as:
 - Avoid recursion
 - Avoid having array access within nested loops
 - Use object pooling, avoid create new object, thus avoid garbage collect, especially within loops
 - Try use Java's build in methods, avoid rewriting your own routines

Conclusion cont.

- Java has a rich set of APIs for fast development
- Definitely worth to use on PDA device software development

Future works

 Look into Java's IO and network performance on PDA devices

Source code

The project source code can be found at:

http://www.cs.columbia.edu/~zxin/cs499 5-2/final/project

References

- [1] Dennis M. Sosnoski. Java performance programming, Part 1: Smart object-management saves the day. Java World, November 1999. http://www.javaworld.com/javaworld/jw-11-1999/jw-11-performance.html
 - [2] Dennis M. Sosnoski. Java Performance Comparison with C/C++. Sosnoski Software Solution, Inc. This report was presented in 1999 JavaOne conference. http://www.sosnoski.com/Java/Compare.html
 - [3] J. E. Moreira, S. P. Midkiff, and M. Gupta. A Comparison of Java, C/C++, and FORTRAN for Numerical Computing. IEEE Antennas and Propagation Magazine, Vol. 40, No. 5, October 1998.