
An Esterel Virtual Machine
(EVM)

Aruchunan Vaseekaran

Why

• Esterel is suited for Deterministic Control
Systems
– Imperative Language
– Synchronous
– Concurrency, Preemption

• Not widely available in low cost systems.

Related Work - Pascal
• EVM Concept

– Compile code for abstract machine.
– Write Interpreter for each target platform
– Makes compiler very portable
– Slower Speed

• Pascal P-Code Machine
– 1970
– Machine understood pascal primitive types
– Single Stack
– Single Threaded

Related Work - JVM

• Java JVM
– All java code compiled down to JVM byte

codes
– Stack based – 1 Stack/Thread
– Supports multiple threads
– Object creation/de-allocation
– Monitors for protecting critical code sections

Plan

• Design EVM
• Create Compiler by modifying ECL
• Implement Linux EVM & Test
• Create EVM on Lego Mindstorms
• Compare Approaches

– Expect EVM approach to be slow
– Expect EVM code size to be small

EVM Design – Choices
• Either have instructions for Esterel features such

as threads, exceptions or C
• Or: make EVM run the C subset which EC

compiles down to.
– Simulates state of resumable instructions using state

variables.
• Our Choice: have instructions for Esterel

Features:
– Less code
– Clearer output, Easier to compile
– Makes more sense

EVM Design – Using the EVM

• Its initialized with Byte Codes
• Repeat for every cycle:

– Set external input signals
– Run the EVM for a cycle
– Retrieve external output signals

EVM Design – Registers

• Program Counter (PC)
• General Purpose Registers R0-R8
• Stack Pointer (SP) only used for

expression evaluation
• State Register (SR)
• Flag Register (FL)

– Holds result of logical ops

EVM Design – State Information

• For Each Thread:
– Tread id
– Address to start of thread
– Register Save Area
– Completion Code

• -1 context switches (coroutine)
• 1 paused for cycle
• > 1 terminated with exception

EVM Design – State Information
cont..

• For Each Thread
– Store all active traps:

• Trap id
• Address of trap handler

EVM Design – Signal Instructions

• All signals are given unique numbers by
the compiler

• Sigtst signum
– Test for present

• Sigemit signum
– Make signal present

EVM Design – Trap Instructions

• Trapdef id, handler_address
– Defines trap

• Trapdel id
– Undefines trap

• Exit id
– Causes an exception:

• If trap handler exists in current thread
– Branch to it

• Else
– Terminate the current thread and “throw the exception”

EVM Design – Example EVM code
for a trap

• trap T in
• s1;
• present S then

exit T end;
• s2;
• end

EVM Design – Example EVM code
for a Trap cont..

• trapdef #6, trap_end:
• # S1
• ..
• # present S then
• ..
• exit 6
• ...
• ...
• # S2
• trap_end:
• trapdel #6

EVM Design – Thread Instructions

• Threads have unique numbers to EVM
• Threaddef id, start_address

– Defines a thread to the EVM
• Threaddel id
• Threadrun id

– Runs one thread for a cycle
• Pause

– Terminates thread for this cycle only. In next cycle,
control will go to instruction after pause.

• Threadone
– Terminates this thread forever

EVM Design – Thread Instructions
cont…

• Threadwait cnt,tid1,tid2,tid3
– Runs a bunch of threads for a cycles and then reacts

to their completion state.
– If they all terminate normally, threadwait will also

terminate and control goes to next instruction after
threadwait.

– If they all finish for this cycle, threadwait will also
finish for this cycle.

– If any one of them hit an exception, threadwait will
wait for the remainder to finish for the cycle and then
propagate the exception.

EVM Design – Coding a ||
Statement into Threads

• S1 || S2

• threaddef 5,S1_start:
• threaddef 6,S2_start:
• threadwait 2,5,6
• threaddel 5
• threaddel 6
• jmp par_0_end;
• S1_start: S1
• threaddone
• S2_start: S2
• threaddone
• Par_0_end:

Compiler for EVM - Approach

• modify EC, Stephen Edwards ESUIF based
compiler

• ESUIF is based on a set of independent
compiler passes

• Passes can be added dropped
• start from Internal Representation (IR) of EC
• IR like C with Esterel semantics
• Added passes to map IR to something close to

EVM instructions

Compiler for EVM – Compiling
Trap..

• Trap is mapped to try in IR
• trap T in
• s1;
• present S then exit T end;
• s2;
• end

• Try {
– S1
– Present S then exit T end;
– S2

• }

Compiler for EVM – Compiling
Trap..

• trapdef #6, trap_end:
• # S1
• ..
• # present S then
• ..
• exit 6
• ...
• ...
• # S2
• trap_end:
• trapdel #6

Compiler for EVM – Compiling ||
• S1 || S2

• parallel {
• thread {
• pause
• emit A
• }
• thread {
• pause
• pause
• emit B
• }

• }

Compiler for EVM – Compiling ||
cont..

• threaddef 1,thread_1_start:
• threaddef 2,thread_2_start:
• threadwait 2,1,2
• threaddel 1
• threaddel 2
• jmp parallel_1_end:

• thread_1_start:
• pause
• sigemit 0
• threaddone

• thread_2_start:
• pause
• pause
• sigemit 1
• threaddone
• parallel_1_end:

Status of Compiler and EVM

• Created compiler passes for important
mappings
– try, abort, parallel
– Hand verified

• Created Design for EVM – not
implemented

Conclusions & Future Work
• Achieved

– EVM Design
– Compiler Design
– Implemented core compiler pieces and verified

• Future Work
– Finish implementing compiler and EVM (2-3 man

months)
– Measure performance
– Implement on microcontroller for validation
– Optimize EVM and compiler

• Branch optimization

Lego Mindstorms

