
An Esterel Virtual Machine (EVM)

Aruchunan Vaseekaran
Dept. of Computer Science

Columbia University, New York, NY
av62@columbia.edu

December 16, 2002

Abstract

Esterel is a synchronous, imperative language designed to
specify deterministic control systems. However compilers and
run time environments for Esterel are not available on low cost
microprocessors and microcontrollers. We address this short-
coming by designing and implementing an Esterel Virtual Ma-
chine and compiler that will operate on a variety of low foot-
print target platforms. We will compare the efficiency of this
approach to the traditional approach of generating native code.
We will show that it requires less memory at the cost of exe-
cution speed.

1 Introduction

The Esterel programming language [1] is an imperative control
flow language which includes semantics for concurrency and
preemption based on a synchronous global clock. Esterel pro-
grams are deterministic and its semantics are formally defined.
As such Esterel is highly suitable for building deterministic
control systems. Unfortunately, Esterel is not widely available
on many low cost embedded controllers.

A method of making programs highly portable is to com-
pile then for an abstract virtual machine and then build virtual
machine interpreters for all platforms on which the programs
are to run. Programs written for the Esterel programming lan-
guage can also be made highly portable in this manner at the
cost of execution speed.

In this project we will design an Esterel Virtual Machine
(EVM) and modify an existing compiler to generate code for
it. The EVM will be a small C program. It will have instruc-
tions for signal handling, multiple threads of execution and
context switching between threads.

Finally we will contrast the approach of generating EVM
code to that of generating native machine code. We expect to
find that the EVM approach is less efficient by 2 orders of
magnitude in terms of execution speed, but that it is much more
efficient in terms of total memory footprint.

The remainder of this paper consists of the following sec-
tions: Related Work, Esterel Primitives, Design of the EVM,
Compiler for the EVM, Status of the Compiler and EVM and
Conclusions and Future Work.

2 Related Work

The approach of compiling languages for virtual machines is
not new. It was used at least as far back as the 1970’s in Pascal
Compilers [5]. The USCD Pascal Compiler generated code for
an abstract machine called the P-Code Machine. The P-Code
machine was stack-based and supported a global heap. It un-
derstood the primitive types supported by Pascal such as inte-
gers and sets. It had no support for concurrency or locking.

A more recent example of the use of virtual machines is the
Java Virtual Machine [7] (JVM). THe JVM was designed for
use in networked environments to ensure the secure platform
independant delivery of programs accross a variety of com-
puters and devices. All Java programs are compiled into Java
Byte Code instructions for the Java Virtual Machine. At run-
time, the Byte Code instructions are executed by the virtual
machine. This process is sometimes optimized using a Just-In-
Time (JIT) compiler, which will compile the Byte Codes into
native instructions at run-time.

The JVM is stack-based like the P-Code machine but also
supports higher level abstractions such as multiple threads of
execution, object creation, object de-allocation and monitors
for protecting critical sections of code.

The Common Intermediate Layer (CIL) [6] in Microsoft’s
.NET environment is another example of a virtual machine
which is also stack-based. All languages in the .NET environ-
ment are compiled into CIL code. Like Java byte Codes, CIL
supports high level object abstractions. The fact that all lan-
guages are compiled into CIL, means that modules written in
different languages can interoperate in the same program.

A very different example of a virtual machine is VMWARE
1, which is used to simulate real hardware on real-platform.
This software enables one to run multiple virtual machines
on a single real machine instance. So a x86 machine running
VMWARE can have running within it a virtual x86 machine
running Windows NT and another virtual x86 machine run-
ning SUN Solaris. This type of virtual machine reduces hard-
ware costs and server room real-estate at the expense of per-
formance.

Many different compilation strategies exist for Esterel. The
original approach by Berry [1] was to compile programs into
a single finite state machine. This method produces very fast

1http://www.vmware.com

1

code but suffers from state-space explosion as the program size
increases. An improved approach also due to Berry mapped
the Esterel program into a network of logic gates and then gen-
erated code that simulated the network. This hardware simu-
lation approach scaled very well with program size but gen-
erated much slower code than the single finite state machine
approach.

The EC compiler by Edwards [2, 3], transforms the program
into a concurrent control-flow graph. This graph is then ana-
lyzed and transformed into a set of individual program threads
which are statically scheduled. We prefer to visualize this as a
set of finite state machines which are statically scheduled. The
point at which execution of a finite state machine stops and
at a which another finite state machine resumes execution can
be determined at compile time for most Esterel programs. The
EC approach generates smaller and nearly as efficient code as
the hardware approach but cannot compile all classes of legal
Esterel programs.

3 Esterel Features

We will briefly review some of the features of the Esterel lan-
guage in order to illustrate the design of the EVM. The fea-
tures are the Esterel Primitives, Concurrency and Causality
and Reincarnation.

3.1 Esterel Primitives

The Esterel language is built around a a few primive opera-
tions which can be used to express other language features.

p r e s e n t S then p e l s e q end
emit S
loop p end
pause
suspend p when S
trap T in p end
e x i t T
p | | q

The present statement checks for the existance of a signal
and then conditionally executes its body. If the condition fails
the else part of the statement is executed.

The emit statement, makes the signal S present in this in-
stant. The loop statement is a conventional loop construct
which executes its body repeatedly.

The pause statement is unconventional, it causes execution
to stop for the current instant. In the next instant or cycle ex-
ecution resumes at the statement succeeding the pause state-
ment.

The suspend statement, executes its body in the current in-
stant. If the body does not terminate in the current instance, the
body will continue to be executed in later cycles only when the
condition S is not present.

The trap and exit statement together form Esterels preemp-
tion mechanism. The body of the trap statement is run in all
instants that the trap statement is executed. If an exit statement
(corresponding to the trap) is executed inside the trap body the
trap statement will terminate when the body of the trap has
finished for the current instant. The body will finish when it

either calls an exit or
when it executes a pause or when it terminates. When a

body contains multiple threads runnning in parallel, then an
exit in one thread causes all threads to terminate once the other
threads have finished for the current instant.

Traps cans be nested and when multiple exits are executed
(from threads within a trap) the exit for the outermost trap
takes precedence over the other. The effect of the exit state-
ment is equivalent to raising an exception.

The parallel operator is used to run multiple statements in
parallel. The parallel statement terminates when all threads in
the parallel have terminated. Note that the statements being run
in parallel can terminate in the current instant or in later cycles.
However the group of statements within the parallel will only
terminate when all threads have terminated.

3.2 Concurrency and Causality

Compiling Esterel poses some subtle difficulties because of the
instaneous nature of signal propagation and statement execu-
tion in the language. Sigals propagate instantly and can have
only one value in a cycle. This means that statements that emit
a given signal must be run before statements that test the value
of that signal in the current instant. It is implied that the two
sets of statements are in sibling threads, as it will be illegal to
emit and then test the value of a signal within one thread within
an instant. The statements in the threads are said to have causal
links which must be maintained at run-time.

To compile such programs, the threads in the program must
be scheduled so as not to violate causality. This scheduling is
done statically at compile time.

3.3 Reincarnation

In general statements in Esterel can execute only once in a
given instant, however in some cases there is complicated
interaction between concurrency, traps and loops which can
cause the statements to be executed more than once in an in-
stant. This behaviour is called reincarnation and is a difficult
compilation issue.

4 Design of the EVM

4.1 Design Choices

The main design choice in the EVM is wether to provide ex-
plicit instruction support for Esterel features such as threads
and exceptions. The alternate approach is to design the min-
imum virtual machine which supports an esterel compiler
which compiles down to a subset of C without any notions
of threads or exception handling. The latter approach leads to
a program which is more removed from the original Esterel
program and will result in greater code size. This is because
code needs to be inserted to remember the point where execu-
tion left off in a cycle. This is equivalent to inserting code to
simulate a program counter.

The approach we have taken is that of providing explicit
support for threads and exceptions. We believe this results in
shorter machine code and is easier to compile down to.

The approach taken in designing the EVM is to specify a

2

relatively simple virtual processor with a few additional in-
structions for thread and exception handling. The EVM also
has conventional branching, arithmatic and logical operations.
The EVM does not specify a word size as this needs to be
varied depending on the application. We can conceive of ap-
plication which require a 8 bit word size such as one to control
the lights in a Automobile to flight control applications which
require 32 bit word size size. We envision that the word size
will be a run-time parameter to the compiler and a compile
time setting for the EVM source code.
4.2 Using the EVM

The EVM is initialized with the EVM Bytes Codes of all the
modules comprising the application and a pointer to the top-
most module. Once initialized the EVM is ready to be executed
as part of a system.

The EVM is called once each cycle. Prior to being called it’s
state is updated with the state of external input signals for the
current environment. Immediately after the EVM is called the
values of external output signals are read from it and passed to
the environment in some system specific manner.

The cycle time of an EVM program is determined by the
maximum time it will take to run for a cycle. This is a function
of the program, the efficiency of the EVM implementation and
the speed of the processor which is running the EVM. It is the
responsibility of the system designer to ensure that the cycle
time of the EVM program is within the required response time
of the system.
4.3 Registers

The EVM has a simple register set which includes a program
counter (PC), 8 general purpose registers (R0-R8), a state reg-
ister SR, and a flags register FL which holds the results of the
last arithmatic or logical operation performed. There is also a
stack register (SP).
4.4 Address Spaces & Data Structures

The EVM has a single byte addressable memory space, which
is divided into a code area and a data area. The evm instruc-
tions are stored and executed from the the code area. The Data
area is used to store evm state information, a stack as well as
working memory for the executing progam. The state informa-
tion comprises of signal states, thread states and EVM state.
The stack in the EVM is very temporary and is not preserved
accross thread invocations. Its purpose is to aid in evaluating
expressions within a thread and within a cycle.

4.4.1 EVM State

The EVM state is used to restart the execution of the program
between cycles. It consists of a pointer to the thread state of
the main thread. The main thread is defined as the first thread
in the topmost module of the program.

4.4.2 Signal State

The signal state is used to store the current values of signals in
the system. The signals are referenced by index and the signal
state area is organized as an array of both input and output
signals.

4.4.3 Thread State

The thread state area is used to store information about all
threads in the system. Each thread in the system has a glob-
ally unique id. The per thread information stored is its id,the
completion code of the thread, the id of the parent thread, a trap
state area, a pointer to the starting instruction for the thread and
an area to save the register state of the thread when it needs to
call a child thread or when it performs a co-routine style con-
text switch to a sibling thread.

The thread completion code is an integer which stores the
completion state of the thread. The completion code can take
integer values of -1 and higher. A value of -1 means that the
thread has performed a coroutine call to another thread. This
means that the thread has not finished executing for this cycle.
A value of 0 means that the thread has terminated. A value of 1
means that thread has finished execution for the current cycles
(it executed a pause). A value higher than 1 means that the
thread hit an exception of that value.

4.4.4 Trap State

The trap state is used to store the current traps that are ac-
tive within the scope of the current thread. For each active trap
there is a global trap id and an address to which the thread
must branch to after an exception executed. This address is
the address following the end of the corresponding trap state-
ment or the address of the trap handler if one has been defined.
By remembering which traps are active in this way, the evm
knows what to do when the progam hits an exception. If it hits
a exception for which there is a handler in the current thread
it branches to the corresponding trap address. If there is no
trap handler defined, then the EVM causes the thread to ter-
minate with the completion code equal to the trap id. Control
then passes to the calling thread and the action is repeated after
waiting for any sibling threads to complete. Trap handling will
be discussed further in a later section.

4.5 Instructions

The instruction set of the EVM can be divided into the fol-
lowing categories: signal, thread, trap, branching, memory ad-
dress, arithmatic and logical. Instruction are encoded using
variable length codes as some of the specialized instructions
(threadwait in particular) need to be very large. The memory
addressing, arithmatic and logical instructions will not be de-
scribed in more detail except to say that all memory addressing
is direct (for simplicity).

3

4.5.1 Signals

Signal instructions are used to test for the presence of a signal
and to emit a signal. All signals have unique numbers to the
EVM. So it is assumed that the compiler will map signal names
to globally unique numbers. The instruction sigtst signum tests
for the presence of a signal. The instruction sigemit signum
makes a signal present.

4.5.2 Threads

All threads in the system have a unique id. Threads are de-
fined and undefined by the instructons threaddef tid, addr and
threaddel tid. A thread is run by calling threadrun tid or by
calling threadwait which runs and waits for multiple threads.
The threaddone instruction explictly terminates the current
thread and returns control to the calling thread.

The threadrun tid function is used to run a single thread.
This function returns control back to the calling thread in the
current cycle in one of three ways: the called thread terminates,
finishes executing for the current cycle or terminates by exe-
cuting an exception. Control returns to the called thread when
the callee is either finished for the cycle or has terminated with-
out an exception, the instruction after the threadrun will be
executed in the calling thread. If the thread terminates with an
exception, then the calling thread will throw the corresponding
exception.

The pause instruction is used to stop the thread for a current
cycle. Control goes to the parent thread.

The threadwait instruction is used to run and wait for the
completion of multiple threads. It is called with the count of
child threads to wait for and a list of their id’s. When thread-
wait is called in a cycle it goes through the threads id’s in its
list. It runs each thread in turn and checks their completion
status. If all threads terminate, then the threadwait instruc-
tion finishes for the cycle and in the next cycle the instruction
after threadwait will be executed. If the threads only finish
for the cycle, then the threadwait instruction will be executed
again in following cycles until all thread terminate or hit an
exception. If a thread hits an exception it will terminate with
completion code indicating an exception. In this case thread-
wait will wait for all other threads to finish for the current
cycle and then cause an exception by executing exit trapid.
If multiple threads that are being waited for by a threadwait
terminate with an exception, then the threadwait raises the ex-
ception with the id equal to the maximum of the exception id
(which are the completion codes) of the child threads. This
mechanism in conjunction with the way that the Esterel com-
piler assign trap id’s, ensures that the outermost exception is
raised when multiple threads terminate with an exception.

As an example the following esterel code:

S1 | | S2

would be compiled to the following EVM instructions:

threaddef 5 , S 1 s t a r t ;
threaddef 6 , S 2 s t a r t ;
threadwai t 2 , 5 , 6 ;
t h r e a d d e l 5 ;
t h r e a d d e l 6 ;

S 1 s t a r t : S1
threaddone ;

S 2 s t a r t : S2
threaddone ;

The example assumes that there are no causal relationships
between S1 and S2 and that they can indead be run the order
S1,S2.

If there is a complicated causal relationship between threads
than the compiler can insert context switching instructions into
the body of each thread to obtain the correct scheduling be-
haviour. The threadswitch tid instruction causes a co-routine
style call to a sibling thread. To execute threadswtch the EVM
notes that the thread is context switching by changing its com-
pletion code to -1. It then saves the current register state and
jumps to the called thread. The called thread then returns to
the calling thread by calling the threadreturn instruction.

Here is an example of an Esterel program which has
complicated causal links:

output a , b , c , d , e ;

p r e s e n t b then emit a end ;
p r e s e n t c then emit d end ;

| |
emit b ; p r e s e n t a then emit c end ;
p r e s e n t d then emit e end ;

This program will be compiled as:

threaddef 1 , s 1 s t a r t ;
threaddef 2 , s 2 s t a r t ;
threadwai t 2 , 2 , 1 ;

s 1 s t a r t :
p r e s e n t b then emit a end ;
. .
t h r e a d r e t u r n ;
p r e s e n t c then emit d end ;
. .
t h r e a d r e t u r n ;
threaddone ;

s 2 s t a r t : # emit b
. .
t h r e a d s w i t c h 1 ;
p r e s e n t a then emit c end ;
. .
t h r e a d s w i t c h 1 ;
p r e s e n t d then emit e end ;
. .

threaddone ;

4

The tstthreadfinished tid and tstthreadterminated tid in-
structions are logical operators which test if thread is finished
for the current cycle or has terminated.

The thread handling instructions for the EVM have rela-
tively low overhead and because the amount of saved state for
each thread is small and because there is no memory manage-
ment operations that needs to be performed.

4.5.3 Traps

The EVM handles traps by recording the currently pending
traps in each thread.All traps in the system have a unique id.
The instruction trapdef id,handleraddr is used to tell the EVM
the address to execute when the corresponding exception is ex-
ecuted. An exception is caused by executing the exit trapid in-
struction. When the exception is executed, the EVM searches
for the trap definition in the current thread. When it find the
definition it sends control to the instruction pointed to by the
definition. This instruction is the one immediately after the
corresponding Esterel trap statement or the start of the han-
dler for that trap. If a trap is not defined in the current thread,
the thread is terminated with a completion code equal to the
trap id.

The trapdel trapid is used to undefine a trap from a thread.
For example the following esterel code fragment:

trap T in
s1 ;
p r e s e n t S then e x i t T end ;
s2 ;

end
will be compiled as:

t r a p d e f 6 , t r a p e n d :
S1
. .
p r e s e n t S then
. .
e x i t 6
. . .
. . .
S2

t r a p e n d :
t r a p d e l 6

5 Compiler for the EVM

A Compiler was built by modifying the EC compiler devel-
oped by Edwards. EC was built using a compiler development
environment called ESUIF. ESUIF structures the compiler as
a set of compiler passes. In the ESUIF environment, compiler
passes can be added or deleted independently making it a flex-
ible environment to develop an Esterel compiler.

The EC compiler first transforms the input program graph
into a form called the intermediate representation (IR). The
IR was chosen to be close to C and also to capture Esterel

facilities for premption, exceptions and concurrency. Our ap-
proach in building the compiler was to start with the IR and
then transform it with new compiler passes that we defined un-
til the resulting representation had a direct mapping to EVM
instructions.

We dont use all the high level passes in the orginal EC. In
particular we map abort statements to a combination of a trap
and parallel statements. We do this because we think that this
simplifies the IR.

A (strong) abort statement would be transformed from:

abort
body

when S

to:
trap T in

suspend body when S ;
e x i t T

| |
loop

pause ;
p r e s e n t S then e x i t T end

end
end

and the weak abort statement would be transformed from:

abort
body

when S
to:

trap T in
body
e x i t T

| |
loop

pause ;
p r e s e n t S then e x i t T end

end
end

The IR consists of the following constructs:

i f (expr) { s t m t s } e l s e { s t m t s }
l a b e l :
goto l a b e l :
break n :
resume { s t m t s }
cont inue
t r y { s t m t s } catch 2 { s t m t s }

catch 3 { s t m t s }
p a r a l l e l { r e sumes } catch 1 { s t m t s } catch 2 { s t m t s }

The if, label and goto constructs have their traditional
meanings.

break 1 is pause in Esterel. Break at higher levels than 1
represent an exception. A break 0 means that the current stat-
ment or thread has terminated for the current cycle and control
passes to the subsequent statement.

5

The resume statement is a statement that can resume its
body in subsequent cycles. A resume statement is resumed
in subsequent cycles by executing the continue statment. We
dont use this mechanism in our compiler as the EVM keeps
track of state between cycles using the PC for each thread. So
a resume construct is compiled by mapping the statements in
its body.

5.1 Compiling the Try statement

The try statement is the IR representation of an Esterel Trap
statement and associated handlers. We translate it by adding
trap definition instructions at the begining of the trap and
putting in trapdel instructions at the end of the trap. So the
following IR fragment:

t r y {
body

} catch 2 {
s t m t s 2

} catch 3 {
s t m t s 3

}

would be compiled down to:
t r a p d e f 2 , s t a r t h a n d l e r 2 ;
t r a p d e f 3 , s t a r t h a n d l e r 3 ;
body
jmp e n d t r a p ;

s t a r t h a n d l e r 2 :
s t m t s 2
jmp e n d t r a p ;

s t a r t h a n d l e r 1 :
s t m t s 2
jmp e n d t r a p :

e n d t r a p :
t r a p d e l 2 ;
t r a p d e l 3 ;

5.2 Compiling the Parallel Statement

The parallel statement is compiled by first adding threadef in-
structions to the begining of the statement and adding thread-
del instructions to undefine the threads at the end of the state-
ment. Then a threadwait instruction is added to run the threads
and collect their termination status.

The Esterel code fragment:

S1 | | S2

is represented in the IR as:

p a r a l l e l {
thread {

pause
emit A

}
thread {

pause
pause
emit B

}

}

and which is then compiled to:

threaddef 1 , t h r e a d 1 s t a r t :
threaddef 2 , t h r e a d 2 s t a r t :
threadwai t 2 , 1 , 2
t h r e a d d e l 1
t h r e a d d e l 2
jmp p a r a l l e l 1 e n d :

t h r e a d 1 s t a r t :
pause
s i g e m i t 0
threaddone

t h r e a d 2 s t a r t :
pause
pause
s i g e m i t 1
threaddone

p a r a l l e l 1 e n d :

The ordering of thread id’s in a threadwait instruction must
take into account the causal relationships between threads. If
this relationship is complex then threadswitch/threadreturn in-
structions must be inserted into the body of the threads in order
to maintain causality.5.3 Compiling the Esterel Suspend Statement

The suspend statement is primitive operation in Esterel, which
is not translated by EC so we compiled it by transforming it
into a loop running the body as a thread:

suspend body when S ;

becomes:

6

threaddef 6 , t h r e a d 6 s t a r t ;
threadrun 6 ;
pause ;
l o o p 0 b e g i n :

i f thread 6 f i n i s h e d
then jmp s u s p e n d e n d :
t s t t h r e a d d o n e 6 ;
jmpeq s u s p e n d e n d ;

s i g t s t S ;
jmpeq p r e s e n t e n d ;
threadrun 6 ;
p r e s e n t e n d :
pause ;

goto l o o p 0 b e g i n ;

t h r e a d 6 s t a r t :
body
. .
. .
threaddone ;

s u s p e n d e n d :

First a thread is defined for the body. It is then run once. If
the thread has not terminated it is repeatedly run again within
a loop only if the condition is absent.

6 Status of the Compiler and EVM

We have succesfuly modified the ESUIF compiler to perform
the more important transformations including transforming
parallels into EVM instructons and mapping abort statements
in terms of traps, suspends and parallels. Hand simulation of
the resulting code demonstrates the correctness of the resulting
program. The details of the EVM have also been worked out it
and a minimal subset of it has been implemented.

Given what we have learnt so far we believe that implement-
ing a complete compiler and EVM is straitfoward. We believe
that a 2-3 man month effort is required to produce a reasonably
complete compiler and EVM.

7 Conclusions and Future Work

We have demonstrated how to build an EVM and how to com-
pile code for it by modifying an existing compiler. We have
shown that the EVM instructions can support the complex con-
currency and exception handling needs of Esterel.

The transformations needed by specialized variants of the
abort (such as abort .. immediate) statement need to be un-
derstood and we need to verify wether they can be handled
correctly by the compiler. Work needs to be done to fully im-
plement the EVM and compiler. Thereafter we need to com-
pare its performance (in terms of speed and memory footprint)
with other Esterel Compilers. Once these performance mea-
surements have been made, the compiler and EVM will need
to be optimized. One obvious optimization that can be per-
formed is to remove all the branch statements that are needed
to jump over the code for a thread in it parent. These branches
can be removed by moving all the thread specific code to the

end of the program.
We also plan to use the EVM to run an Esterel program on

a microcontroller platform. The platform we will target is the
LEGO Mindstorms Robot construction kit [4]. This brain of
this kit is called the RX brick and is based on a Hitachi H8
microcontroller with 36K of externel RAM and 16K of on-
chip ROM 2. This will demonstrate a real Esterel application
based on an EVM approach.

References

[1] Gerard Berry and G. Gonthier. The esterel synchronous
programming language: Design, semantics and implemen-
tation. Scientific Computer Programming, 19, November
1992.

[2] Stephen A. Edwards. An esterel compiler for large
control-dominated systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 21(2), 2002.

[3] Stephen A. Edwards. ESUIF: An Open Esterel Compiler.
Electronic Notes in Theoretical Computer Science, 65(5),
2002.

[4] Jonathan B. Knudsen. The Unofficial Guide to LEGO
MINDSTORMS Robots. O’Reilly, 1999.

[5] Steven Pemberton and Martin Daniels. Pascal Implemen-
tation: The P4 Compiler and Interpreter. Ellis Horwood,
1982.

[6] Thuan Thai and Hoang Q. Lam. .NET Framework.
O’Reilly, 2001.

[7] Frank Yellin Tim Lindholm. The Java Virtual Machine
Specification. Addison-Wesley, 1996.

2http://graphics.stanford.edu/ kekoa/rcx/#Hardware

7

