Code generation from an Esterel PDG

Cristian Soviani

October 30, 2002

Abstract

If a concise CFG exists for the given PDG, an optimal
CFG can be efficiently generated. This is not the
case for most Esterel programs. Solving the general
problem optimally is NP-complete, so my project will
find an non-optimal but efficient CFG.

1 Introduction

From the programmer’s point of view, Esterel can
be the ideal choice for writing a large class of em-
bedded systems software. The real battle is perfor-
mance. Speed and size are both crucial issues in em-
bedded systems. If the Esterel compiler does not gen-
erate very efficient code, the programmer will have to
switch back to C.

The standard Esterel V5 compiler! can generate
both automata and netlist code. The first is very fast
but code size can explode for other than small pro-
grams. The former keeps the code small but it is slow.
These methods have a solid theoretical background
(and they are excellent tools for program analyzing
and debugging) but run-time performance requires a
more pragmatic view of the problem.

In his EC compiler, Edwards [1] starts from the
Berry’s IC intermediary format to generate a CCFG
(concurrent control flow graph) then a SCFG (se-
quential control flow graph) which can be easily
translated into code. Also EC generates quite effi-
cient code, there is still place for improvement.

So compiling Esterel efficiently is not at all a trivial.

My approach is to generate the CFG (controlflow
graph) and thus the code from the PDG (program de-

Iwww.esterel-technologies.com

pendency graph). The PDG is an intermediary rep-
resentation of the program, consisting from a CFG
(control flow graph) and a DDG (data dependency
graph). Instead of being a simple “translation” of
the input program, like IC, the PDG describes the
program at a higher level of abstraction, removing ar-
bitrary links between the nodes and thus containing
only mandatory flow and control dependency. Gen-
erating a CFG from a PDG is not a trivial problem
but it is a promising way to get both short and fast
code.

2 Related Work

Simmons and Ferrante describe an efficient algorithm
[2] for generating a CFG from a PDG, when a con-
cise CFG exists (i.e. no additional predicates/ code
duplication is required). Their ingenious algorithm
reduces the problem to the ordering of each parent
node’s children (siblings) and runs in polynomial time
(O(ne) n=nodes, e=edges).

The algorithm walks the CFG twice and computes
for each node a “region” and a “eec”. Also quickly
computed, this information will if there are CFG con-
straints(such as external edges) in scheduling siblings.
Sibling ordering is done by inspecting sibling’s “eec”
and data dependencies, using a set of ordering rules.

Also the algorithm stops when finding a concise
CFG is not possible, it clearly points out where guard
variables / code duplication are needed to solve the
general problem.

Steensgaard extends Ferrante’s work to handle irre-
ductible programs which contain multiple entry loops
[3]. This is done by introducing the notions of loop
entry and close nodes. His work still considers only



PDGs for which a concise CFG exist.

Edwards attacks the problem from a different angle
in his EC Esterel compiler [1]. He notices that the
general problem is equivalent to scheduling the nodes
in a topological order according to the PDG graph.
He also shows the general problem is NP-complete
(by proving it can be used to solve a known NP-
complete problem).

Technically, the key is generating a SCFG from the
CCFG. Also intuitive, it is rather difficult. It can in-
tuitively seen as “thread interleaving”. EC statically
slices the threads and introduces additional variables
to store the thread ”state” at cut points. The vari-
ables are later used to “resume” the thread execution.

EC does not search for the “impossible to find” op-
timal solution but uses a depth first algorithm. Ed-
wards’ work is sustained by the experimental results
which show a slightly increase in code size for a large
class of real world Esterel inputs (even a malicious
party can find an input to blow up the output size).

Fortunately, Esterel CFGs do not contain loops
because of Esterel’s timing concept. The program’s
CFG will run each tick. State variables maintain the
“machine state” between runs. Each tick, the pro-
gram will compute current outputs depending of the
current inputs and the state variables.

My project will use Edwards’ slicing technique, as
well as Ferrante’s sibling scheduling algorithm.

References

[1] Stephen A. Edwards. An Esterel compiler for
large control-dominated systems. IEEE Trans-
actions on Computer-Aided Design of Integrated
Circuits and Systems, 21(2):169-183, February
2002.

[2] Barbara Simons and Jeanne Ferrante. An efficient
algorithm for constructing a control flow graph
for parallel code. Technical Report TR-03.465,
IBM, Santa Teresa Laboratory, San Jose, Califor-
nia, February 1993.

[3] Bjarne Steensgaard. Sequentializing program de-
pendence graphs for irreducible programs. Tech-

nical Report MSR-TR-93-14, Microsoft, October
1993.



