Review of Digital Logic
COMS W4/995-02
/
Prof. Stepﬁen A. Edwards
Fall 2002

Columbia University
Departme/er‘(\)f"Can’ﬁiUter\§cience

~
-

/

Combinat/ional Logic

/
/
/

Most Basic Computation

Every gate is continuously looking at its inputs and
instantaneously setting its outputs accordingly

Values are communicated instantly from gate outputs to
inputs
All three switch
at e/xactl)(the
same time

. 4 /
AT
B~ 1

A—DOLDO—C o
"~ —

/

Synchronous Digital Lo

Raw materials: CMOS transistors and wires on ICs
Wires are excellent conveyors of voltage™
Pt

« Minimal leakage /

~

/ .
* Fast, but not instantaneous propagation

* Many orders of magm"tude more conductive than glas

CMOS transistors are reéasonable SW|tches
e Finite, mostly-| predlctable swrtchlngm*nes
¢ Nonlinear transfer charactenstlcs

* Voltage galn is in the 100\

Boolean Logic Gates

Do D
— —
Inverter AND OR XOR
AY ABY ABY . AB
01 00 0 000 000
10 010 011 011
100 101 101
11 111 110
s
s
N
s
; s
Simple Delays O ee——
s
C ee——

Real implementations are not quite so perfect
Computation actually takes some time

Communication actually takes some time

/ \‘
N\ /
A__ T

Philosophy

Must deal with unpredictable voltages and unpredictable
delays U —

~

Digital: discretize values to a\yicr voltage noise
« Only use two values /

* \oltages near these two are “snapped” to remove

noise [
|
Synchronous: discretizenﬁrﬁé to avoid “time noise”

* Use a global, perlodlc cIock \
e Values generated beforet\he clock are |gnored until
the clock arrrves N ‘ -

~_ -

A Full Adder

Typical example of building a more complex function

ABCin CoutS A N =
000 00 B D—S
Cin \
001 01 \
p— \
010 01 \
011 10 ‘
100 01
100 10 | .
\ N\ /
110 10 "/ N /
111 11 ‘ \\)
\ e
B
B
B
B
Delay Ranges L ——.
B
o ——

Delays are often partially unpredictable

Usually modeled with a minimum and maximum

Four-Valued Simulation

Busses mplementing Busses

Wires sometimes used as shared communication medium OE Basic trick is to use a “tri-state” driver Wires in digital logic often modeled with four values:
Think “party-line telephone” Py D than can choose to-not drive a wire. 0,1,X 2z P
X represents an unknown state ‘
Bus drivers may elect to set the value on a wire or let | Q q , Dam '”PUt and output enable : P 9
; Al \ = N\ . ip-flor ircui
some other driver set that value \ % When Urlver wants to send values on \ State of a latch or flip f/lop when circuit powers up \
Electrically disastrous if two drivers “fight” over the value Q the bus, OE = 1 and D contains the \ * Result of two gates trying to drive wire to 0 and 1
on the bus ‘ 4_ g data/ | simultaneously ‘
| |
a % Wheh driver wants to listen and let * Output of flip- rop when setup or hoId time violated
// ! N\) $_ /éome other driver set the value, / * Output of a gate readlng an “X” or z")
/ / OE = 0 and Q returns the value
\\ / . Z represents an undrlven state Value on a shared bus
‘ N when no driver i |§ output-enabled ‘ -
. O e—————— . O —— .
B 0] B 00 (]
B 0] B 00 (]
B 2 | B 0 (]
B 0] B 00 (]
L — Sequential Logic B] State Machines
B 0] B 00 (]
| |]
Simply computing functions usually not enough Common use of
— T Want more time-varying behavior state-holding elements |
//) . Typical: combinational logic with state-holding elements Idea: machine may go to a //
. yas L. new state in each cycle
Sequential Logic and Timing Inputs se—- - Outputs
Combinational
/ L ogic Output and next state |
‘ 9 N dependent on present stz‘ate
a) = E.g., afour-counter
/// h N\ /// ‘
/ g \\\ \ //’ < // \\\ /
AN Clock — —| AN \
N 7 State-holding glements ‘ D | -
. e 1 D 2 20 0 0 1 . —
B 0] B 00 (] B 00 [
B 0] B 00 (] B 00 [
B 2 | B 0 (] B 0
~ B 00 (] B 00 [
o q B 0] B 00 [
State-holders: Latches & E Latches & Flip-Flops C ———— RAMs O ee——
B 00 (] B 00 [
| |] B
Latch Flip-flop Timing diagrams for the two common types: Another type of state-holding element
Level-sensitive Edge-sensitive —I_I_l— Addressable memory
o - !
Transparent when clock is /AIWays holds value . Latch Cik : Good for storing data like a von Neumann program
high /' New value sampled when | 5 .
Holds. last value when clock transitions from 0 to 1 Ik Data In » »Dﬁta out
clock is low ‘ More costly to implement |
. P ‘ ‘ ()
Cheap to implement . Much easier to design with | Flip-flop D Qf— j Address »
Somewhat unwieldy to / :
design with \ / Read —>|
AN P Write ——> .

RAMs

Write cycle

Present Address, data to be written
Raise and lower write input

Read cycle

Present Address

Raise read

Contents of address appears on data otlt

Data In)) Data Out
Address)

Read —=>»
Write —>»

~

Synchronous System Tim

Budgeting time in a typical synchronous design

Clock Perlod \
Skew Skew
— LohgesH:!ath —
Clk-to-Q ~_ Setup

Typical System Architect

Primitive datapath plus controller

| .
/ \
/ \

Controller
/
Operation Result Latch Latch Read] Write
| Addre
Registers| | dressb] Memory
e Reg.
/

[.
| Shared Bus

Setup & Hold Times

Flip-flops and latches have two types of tlmrng
requirements:

Setup time: D input must be stable some time before the
clock arrives /

/
Hold time: D input must remain stable some time after th
clock has arrived

\

\ | /
‘ | -
/ \
/ N\

yZ
/

Digital/"/Systems

\

\

Implementing Digital Logi

Discrete logic chips

NAND gates four to a chip and wire them up (e.g., TT|
Programmable Logic Arrays (PLAs) AN

Program a chip contalnlngANDs feeding big OR gate
Field-Programmable Gate Arrays (FPGASs)

Program lookup table‘s’and wiring routes
Application-Specific Integrated Circuit (ASICs)

Feed a logic netlist to a synthesis system

Generate masks;md h|re someone to burld the chip
Full-custom DeS|gr1 \ \

Draw every single wire ahq transistor yoqrself

Hire someone to fabricate t\h\e\chip or be ﬂntel //

=
~

S

Clk

Setup & Hold Times

For an (edge-sensitive) flip-flop

|
/
/

Time

Setup

'Hold
Time

:

Typical System Architect

Most large digital systems consist of

Datapath

Arithmetic units (adders, multiplie/rs)

Data-steering (multiplexers)""/

Memory

Places to store data across clock cycles

Memories, register files, etc.

Control //

\\

Interacting finite state machmes

/

\ | /
‘ | -
/ \
/ N\

/

Direct how the data moves through the datapath

Implementing Digital Logi

Discrete logic is dead

Requires too many chips

PLAs

‘ ‘ ‘ S
/ \
/ \

Nice predicable timing, butSmaII and limited

FPGAs

High levels of mtegratron very convenient
Higher power and per -unit cost than ASICs

ASICs

Very high levels of mttagratron ‘costly to design
Low power, low per-unlt cost, but huge |n|t|al cost

Full-custom

\

Only cost-effective for very hrgh -volume parts
E.g., Intel mrqroprocessors

/

B 200]
Digital Logic in Embedded SysStemss===
B]

Low-volume products (1000s or less) typically use FPGAs
High-volume products usually us;q,ASICE’*’""""‘ ~
Non-custom logic usually imple/r;lented using) .
application-specific standard parts \
e Processor chipsets
» Graphics controllers \ o
* PCl bus controll/eré/\ : \
- UsBconrollers \ ya
 Ethernet inte;rfaces \\\ -

