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Combinat/ional Logic
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Most Basic Computation

Every gate is continuously looking at its inputs and
instantaneously setting its outputs accordingly

Values are communicated instantly from gate outputs to
inputs
All three switch
at e/xactl)( the
same time
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Synchronous Digital Lo

Raw materials: CMOS transistors and wires on ICs
Wires are excellent conveyors of voltage™
Pt

« Minimal leakage /
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* Fast, but not instantaneous propagation

* Many orders of magm"tude more conductive than glas

CMOS transistors are reéasonable SW|tches
e Finite, mostly-| predlctable swrtchlngm*nes
¢ Nonlinear transfer charactenstlcs

* Voltage galn is in the 100\
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Real implementations are not quite so perfect
Computation actually takes some time

Communication actually takes some time
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Philosophy

Must deal with unpredictable voltages and unpredictable
delays U —
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Digital: discretize values to a\yicr voltage noise
« Only use two values /

* \oltages near these two are “snapped” to remove

noise [
|
Synchronous: discretizenﬁrﬁé to avoid “time noise”

* Use a global, perlodlc cIock \
e Values generated beforet\he clock are |gnored until
the clock arrrves N ‘ -
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A Full Adder

Typical example of building a more complex function
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Delays are often partially unpredictable

Usually modeled with a minimum and maximum




Four-Valued Simulation

Busses mplementing Busses

Wires sometimes used as shared communication medium OE Basic trick is to use a “tri-state” driver Wires in digital logic often modeled with four values:
Think “party-line telephone” Py D than can choose to-not drive a wire. 0,1,X 2z P
X represents an unknown state ‘
Bus drivers may elect to set the value on a wire or let | Q q , Dam '”PUt and output enable : P 9
; Al \ = N\ . ip-flor ircui
some other driver set that value \ % When Urlver wants to send values on \ State of a latch or flip f/lop when circuit powers up \
Electrically disastrous if two drivers “fight” over the value Q the bus, OE = 1 and D contains the \ * Result of two gates trying to drive wire to 0 and 1
on the bus ‘ 4_ g data/ | simultaneously ‘
| |
a % Wheh driver wants to listen and let * Output of flip- rop when setup or hoId time violated
// ! N\ ) $_ /éome other driver set the value, / * Output of a gate readlng an “X” or z" )
/ / OE = 0 and Q returns the value
\\ / . Z represents an undrlven state Value on a shared bus
‘ N when no driver i |§ output-enabled ‘ -
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Simply computing functions usually not enough Common use of
— T Want more time-varying behavior state-holding elements |
// ) . Typical: combinational logic with state-holding elements Idea: machine may go to a //
. yas L. new state in each cycle
Sequential Logic and Timing Inputs se—- - Outputs
Combinational
/ L ogic Output and next state |
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State-holders: Latches & E Latches & Flip-Flops C ———— RAMs O ee——
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Latch Flip-flop Timing diagrams for the two common types: Another type of state-holding element
Level-sensitive Edge-sensitive —I_I_l— Addressable memory
o - !
Transparent when clock is /AIWays holds value . Latch Cik : Good for storing data like a von Neumann program
high /' New value sampled when | 5 .
Holds. last value when clock transitions from 0 to 1 Ik Data In » »Dﬁta out
clock is low ‘ More costly to implement |
. P ‘ ‘ ( )
Cheap to implement . Much easier to design with | Flip-flop D Qf— j Address »
Somewhat unwieldy to / :
design with \ / Read —>|
AN P Write ——> .




RAMs

Write cycle

Present Address, data to be written
Raise and lower write input

Read cycle

Present Address

Raise read

Contents of address appears on data otlt

Data In ) ) Data Out
Address )

Read —=>»
Write —>»
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Synchronous System Tim

Budgeting time in a typical synchronous design

Clock Perlod \
Skew Skew
— LohgesH:!ath —
Clk-to-Q ~_ Setup

Typical System Architect

Primitive datapath plus controller
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Setup & Hold Times

Flip-flops and latches have two types of tlmrng
requirements:

Setup time: D input must be stable some time before the
clock arrives /

/
Hold time: D input must remain stable some time after th
clock has arrived
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Digital/"/Systems
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Implementing Digital Logi

Discrete logic chips

NAND gates four to a chip and wire them up (e.g., TT|
Programmable Logic Arrays (PLAs) AN

Program a chip contalnlngANDs feeding big OR gate
Field-Programmable Gate Arrays (FPGASs)

Program lookup table‘s’and wiring routes
Application-Specific Integrated Circuit (ASICs)

Feed a logic netlist to a synthesis system

Generate masks;md h|re someone to burld the chip
Full-custom DeS|gr1 \ \

Draw every single wire ahq transistor yoqrself

Hire someone to fabricate t\h\e\chip or be ﬂntel //
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Setup & Hold Times

For an (edge-sensitive) flip-flop
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Typical System Architect

Most large digital systems consist of

Datapath

Arithmetic units (adders, multiplie/rs)

Data-steering (multiplexers)""/

Memory

Places to store data across clock cycles

Memories, register files, etc.

Control //

\\

Interacting finite state machmes
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Direct how the data moves through the datapath

Implementing Digital Logi

Discrete logic is dead

Requires too many chips

PLAs
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Nice predicable timing, butSmaII and limited

FPGAs

High levels of mtegratron very convenient
Higher power and per -unit cost than ASICs

ASICs

Very high levels of mttagratron ‘costly to design
Low power, low per-unlt cost, but huge |n|t|al cost

Full-custom

\

Only cost-effective for very hrgh -volume parts
E.g., Intel mrqroprocessors
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Digital Logic in Embedded SysStemss===
B ]

Low-volume products (1000s or less) typically use FPGAs
High-volume products usually us;q,ASICE’*’""""‘ ~
Non-custom logic usually imple/r;lented using ) .
application-specific standard parts \
e Processor chipsets
» Graphics controllers \ o
* PCl bus controll/eré/\ : \
- UsBconrollers \ ya
 Ethernet inte;rfaces \\\ -




