
Einsterel: A Dynamically Scheduled Compiled Event-Driven
Simulator for Esterel

Michael Halas
 Columbia University

International Business Machines

Vimal Kapadia
Columbia University

International Business Machines

Abstract

The performance of compiled Esterel
code is suboptimal. Prior work has been
done to improve the performance of
compiled Esterel, but more work needs to
be done. This paper presents a high-
performance compiled event-driven
simulator for the Esterel language that
builds on prior work in this area.

ESUIF is used as the front-end to parse
the Esterel, The intermediate output of
ESUIF is taken as input to the event
driven simulator. The events are
scheduled at run-time, as opposed to
other Esterel compilers, which scheduled
at compile-time.

Fill results in here.

Introduction

We propose the first compiled event-
driven simulator that schedules events at
run-time for Esterel code (are we the
first?), Einsterel. Some aspects of EVCF
(Event-Driven Conditional-Free)
simulation, introduced by Maurer [4], are
used for performance.

EVCF offers improved performance over
other event-driven simulation techniques,
by avoiding loops and conditionals.
Essentially, there are 2 types of
statements: assignments and computed
gotos. A virtual function table of
function addresses is used instead of a
type code, to distinguish the node type.
Function addresses are branched to

directly, avoiding decoding of the type
code [4].

Edwards [2] wrote ESUIF, an open
Esterel compiler built on the SUIF 2
system. The ESUIF front-end builds a
very high-level abstract syntax-tree-like
representation of the source Esterel
program [2]. Because the front-end is
separate, it allows for different
compilation paths, making it a good
front-end for Einsterel, as well.

In Esterel, statements can be executed
more than once in a cycle. Statements
also can be executed in a different order,
based on the inputs. This is a problem
with Esterel that not all Esterel compilers
can overcome. Einsterel can handle this
because it dynamically schedules the
events as opposed to scheduling them at
compile time such as Bertin et al’s [1]
work . Being event-driven also enables it
to skip work on threads that are waiting
for a signal, since they do not have to be
scheduled until that signal changes. The
work by Bertin, et al [1] and any
statically scheduled compilers suffer
from many of the limitations stated
above.

However, aspects of static scheduling can
be incorporated into a dynamically
scheduled event driven simulator.
Continuous assignment optimizations
[French 3] can be done to treat separate
events as one event. By combining the
events, we can reduce the number of
events needed to be scheduled.

References
1. BERTIN, V., POIZE, M., AND

PULOU, J. 1999. Une nouvelle
m´ethode de compilation pour le
language ESTEREL [A new method for
compiling the Esterel language]. In
Proceedings of GRAISyHM-AAA.
(Lille, France, March 1999).

2. Stephen A. Edwards, “ESUIF: An Open
Esterel Compiler in Proceedings of
Synchronous Languages, Applications,
and Programming (SLAP),” Electronic
Notes in Theoretical Computer Science
(ENTCS) 65(5), April 2002

3. FRENCH, R. S., LAM, M. S., LEVITT,
J. R., AND OLUKOTUN, K. 1995. A
general method for compiling event-
driven simulations. In Proceedings of
the 32nd Design Automation
Conference (San Francisco, California,
June 1995). pp. 151–156.

4. Peter M. Maurer: Event Driven
Simulation Without Loops or
Conditionals. ICCAD 2000: 23-26

