Philosophy of Dataflow Dataflow Language Mod

Drastically different way of looking at computation —
Y Y 9 P Processes communicating through FIFO buffers

Dataflow Languages Von Neumann imperative language style: program counter - —_
S . FIFO Buffer < AN
COMS W4/995-02 Is king / Process 2

/ \\ Dataflow language: moven)ént of data the priority \\ FIFO /B(Jffer \\

Prof. Step,ﬁen A. Edwards \ \ , FIFO Buffer \
p./a" 2002 \ Scheduling respon5|b|I|ty of the system, not the \ \
COIurfﬁbia University | programmer ‘\ | |
Department of Computer Science ‘ il ‘ o B=
p \\ \ ”/ / // \\\ \\ /

/ \ \ / / y \ \ /

\\\ \‘ / / \\\ \ ya

\ / \

I 1

B |

B 200]

B |

B | g R
Dataflow Languages = NS Dataflow Communicatio Dataflow Languages

B |

B]
Every process runs simultaneously Communication is only through buffers Once proposed for general-purpose programming
Processes can be described W|th |mperat|ve ‘code Buffers usually treated as unboundedfor flexibility- - Fundamentally concurrent: should | map more easﬂxto
Compute ...compute ... recgw/e ...compute .. transrﬁh Sequence of tokens read guar/ nteed to be the same a§ parallel hardware /

/ N\ N\ N\

Processes can only communicate through buffers \ the sequence of tokens written \ A few lunatics built general#ﬁ)urpose dataflow computers \

/ \ Destructive read: readlng a value from a buffer removes | based on this idea / \

“ \ the value ‘\ \‘ Largely a failure: memor%l spaces anathema to the |
/\ / Much more predictable than shared memory / dataflow formalism T \ /
/ \\ \ //' ” / \\ \ //' / \\ \ /'
\ / \ / \
B 0000] B 00]
B 200] B 200]
B 0000] B 00]
Applications of Dataflow =SS Applications of Dataflow =SS Kahn Process Networks
B 0000] B 00]
B] B]
Not a good fit for, say, a word processor Perfect fit for block-diagram specifications Proposed by Kahn in 1974 as a general-purpose scheme
Good for signal-processing appllca,tums ’7"""’”\\ « Circuit diagrams //""""7’""’"'\\ for parallel programming Laid the thegretleal foundatlon
m/ AN for dataflow 7 N
Anything that deals with a continuous stream of data .
ything \ Linear/nonlinear control ;z{tems \ Unique attribute: deterministic \
Becomes easy to arallellze \ / \ / \
yiop / \ * Signal processing / \ Difficult to schedule / \
Buffers typically used for signal processing applications
anywaytyp y | gnarp g.app \ Suggest detafiow semanfics \ Too flexible to make efficient, not flexible enough for a \
P | Common in Electrical Engineering | wide class of applicatiorl\‘ T~ |
// \ \ / Processes are bIocjé, connections arem(fers / Never put to Wides9/€ad use \ /
/ \ \ / / \ \ / / \ \ /
/ \ \ / / \ \ / / \ \ /

Kahn Process Network

Key idea:

\
/

\

|

|

,/“‘
//

~ .

Reading an empty channel/@ks until data is available
Y,
“/

No other mechanism for sampllng communlcatlon
channel's contents 1

Can't check to see/(ethe(buffer is empt

Can’t wait on multlple chanrﬁ&at once

\ ~_ | o

A Process from Kahn’s

process f(in int u, inJnt

{

v,

int i: bool b =true; — — %pterface
for (s) { Inau(es
FIFOs

i =b ? wait(u)

wai t (v);
printf("%\n", ‘j’/);

send(i, w; |
b I b; ‘ wait() returns
} . thenexttoken |
} send() w/t/es a token w’;he FIFO,
intoaFIFO blocking if empty /
wuhoqt blocking \

\ ~_ | -

Proof of Determinism

Because a process cannot check the contents of buffers

only read from them, each process only sees- sequence
data values coming in on bu?y -
Behavior of process:)
/
compute ...write ...read

Compute ...read ...

..compute
Values written only depeJ‘nd -onprogram state
Computation only deﬁends on program&e e

Reads always return sequeniof data values nothing
more [

\ ~_ \ -

Kahn Processes

A C-like function (Kahn used Algol)
Arguments include FIFO channels

Language augmented with send() and wait() operations
that write and read from channels

.
Another Sample Process s

I
process g(in int u, out int v, out In M

{
int i; bool b =true; — T
for(;;) {
i = wait(u); ,
if (b) send(i, ,v); el se send(i, w;
b =1!b;
} \ o Y
} A u— g
// \ N~

Determinism

Another way to see it:

Imagine you are a process. You are only affected by the

sequence of tokens on my w? and can't tell whetl%r\
they arrive early, late, or in what order (blocking takes cal

of this, but you can't tell W/Hether you blocked).
You will behave the same‘““ in any case

Thus, the sequence of tokensyeu put on your outputs is
the same regardles/afthe timing of the\&kens on your
inputs

A Process from Kahn’s

process f(inint u, inint v, out
int i; bool b =true; ™
for (1) | /
i = b ? wait(u) wait(v); \
printf("%\n",)) \
send(i, w; '
b =1!b; \‘ for—w
} / \ \ /
/ \ /
Process alternatefy reads from u and v, priﬁ‘gs the data
value, and writes‘i it to w \ ‘

A Kahn System

Prints an alternating sequence of Os and 1s

Emits a 1 then COpies/iFlf)/l.jt to output

/ h

]]

Emits aO then coMput to outpht
\ ~

/
\

Challenge is running processes without accumulating
tokens o

A

B | B
B | B
B 2 0] B 0 [
Bl | B
Scheduling Kahn Networks == Demand-driven Scheduli Other Difficult Systems =SS
B | B
B] B
Challenge is running processes without accumulating Apparent solution: only run a process whose outputs are Not all systems can be scheduled without token
tokens o being actively solicited. However... —— accumulation ——
A c ~— Only consumes A c \ a / \
/ \ \ / \
, tokens from A b
\ Tokens will ‘ ‘ | ‘
| accumulate here ‘ - Aways T ///\ ‘ I\
B A/ \ . N\ / B 7 \ D < consumes | / Produces // Al;ernates between receiving /
s fways em{ tokens / \ \ \tokens / two a’s for “ one a and one b /
f AN \ | / s‘ \ | /
‘ A - every b N

Tom Parks’ Algorithm

Schedules a Kahn Process Network in bounded memory
if it is possible [

Start with bounded buffers /// ™
Use any scheduling technigﬁe that avoids buffer overflow

If system deadlocks becaﬂse of buffer overflow, increase | \
size of smallest buffer and continue | B blocked waiting for spaFe in B—>C buffer ‘

Run A, then C, then A then C

//

System will run |ndef|n|tely\ N\ /

Parks’ Scheduling Algori

B 0 |
Using Parks’ Scheduling E Kahn Process Networks

Neat trick It works, but. .. Their beauty is that the scheduling algorithm does not
affect their functional behavior —

Whether a Kahn network can execute in bounded memory Requires dynamic memory alyrlrocati(")xriiin%" ~_ :
is undecidable / h o y{/ - Difficult to schedule because Pf need to balance relatlve
» Does not guarantee minimum memory usage

N\ / N\ process rates / N\

Parks’ algorithm does not yiélate this /
/ e Scheduling choices méy affect memory usage

It will run in bounded memory if possible, and use System inherently gives the scheduler few hints about

unbounded memory if necessary « Data-dependent decic‘éions may affect memory usage | appropriate rates
|
T T | * Relatively costly schédulmg algorlthm | Parks’ algorithm expenswe and fussy to implement |
/ \ \) « Detecting dea d’(ock mqy be dlfflcult \) Might be approprlate/ for coarse grain sy\stems where y
/ \ \ / \ \ / scheduling overhead dwarfed by process behawor /

SDF and Signal Proces Multi-rate SDF System

B 20000]
Synchronous Dataflow (SDF)======uas
B]

Edward Lee and David Messerchmitt, Berkeley, 1987 Restriction natural for multirate signal processing DAT-to-CD rate converter
Restriction of Kahn Networks to allpw compile-time_ Typical signal-processing processes: Converts a 44.1 kHz sampling rate to 48 kHz

h d I \ // N // N
e // \ * Unitrate / \ 1 1—2 32 7—8 7—5 1—
Basic idea: each process reads and writes a fixed number e.g., Adders, muItipIiers/ \ D E E [E E D \

of tokens each time it fires:
» Upsamplers (1 in, n out)
loop [| [| [|

read 3A,5B,1C. Lcomputex\:\.\write 2D,1E 7F ‘ * Downsamplers (n inilrrout%f—w—\ ; Upsampler e |
end |00p / ‘u\ \ /‘s // x‘\ \ /‘s // x‘\ \ /‘s‘
/ \ \ / / \ \ / / \ \ /
/ \ \ / / \ \ / Downsampler \ \ /
/ \\\ \ \ // “’ \\\ \ \ // “" \\\ \ \ //
. e —— . \ e ———
B 0000] B
B 0000] B
B 200] B 0 [
B 0000] B
B 0000] A B
Delays O ee— Example SDF System SDF Scheduling e
B 0000] B
B] B
Kahn processes often have an initialization phase FIR Filter (all unit rate) . Schedule can be determined completely before the
Duplicate 56 cycle delay system runs —
SDF doesn't allow this because rates are not alwa*s / — / ~ — ~_
constant h — h Two steps: - h
/ \ — m O Constant // \
Alternative: an SDF systen) may start with tokens inits | multiply 1. Establish relative execution rates by solving a system
buffers _ (ilter of linear equations
These behave like signal‘#processing-like delays | - . . coeffluent)\‘ 2. Determine periodic %Chedule by simulating system for “
Delays are sometimes necessary to avoid deadlock ol N | asingleround N
/ \ \ / \ \ / \ \ /
‘,'/ \ ya \ I_I \ ya / \ /
h ~—_ - | _— - Adder ‘ \\\ - 77“‘ - /"/ \\\ - 77“‘ _— -
. — \\\ T —— \ —
B 0000] B 00] B
B 0000] B 00] B
B 200] B 200] B 0 [
B 0000] B 00] B
SDF Scheduling O ee— Calculating Rates O e— Calculating Rates e
B 0000] B 00] B
B] B
Goal: a sequence of process firings that Each arc imposes a constraint 3a — 9 b Consistent systems have a one-dimensional solution
I a = = . I
 Runs each process at least once in proportion to its - 4b 3d ~ Usually want the smallest integer solution T~
// \\ l 4 prm— \\ // N
rate e b / b—3c — Inconsistent systems only have the all-zeros solution
. / . 2\ / - - AN / N\
* Avoids underflow: no process fired unless all tokensiit 3 2 /3 Qe —a = \ Disconnected systems have two- or higher-dimensional =
consumes are availab1e : solutions
| [d—2a = \ f \
e Returns the number pf tokens in each buffer to their ‘ c 6 d . ‘ ‘ ‘
initial state A ~ \ | e — 780{"] on: | A T \ |
Result: the schedu}! can t\e executed repéatedly withou /’/ 2 3 / 1 a. = 2c /’/ / *\ N\ /’/
accumulating tokens in buﬁe«i ‘ / a ‘;’/ \\ b = 3¢ |/ ‘;’/ \\ /
‘f " - 1 ‘c 2 " d 1: /4;/, o ///

An Inconsistent Syste

No way to execute it without an unbounded accumulation
of tokens o
Only consistent solution is tc}oﬁb/thing -
/ a—c = 0
\
1 1 / a — 2b — 0 \\
a c
| 3b—c = 0
\ |
1 D o /
‘ Impl\les
b \ /'/
\ /
2 A 3 a—c = 0
‘ 3a—2c =0
SDF Scheduling

Fundamental SDF Scheduling Theorem:

,/ ~

If rates can be estab/u’shed, any scheduling \
algorithm that avoid“s buffer underflow will \
produce a correct schedule, provided one exists \

SDF Code Generation

Often done with prewritten blocks inlined according to th
schedule —

For traditional DSP, handwritt/ew{mplementation of Iaﬁg
functions (e.g., FFT)

@

/
One copy of each block’s _éode made for each appearance |
in the schedule ‘ \

l.e, nofunctioncalls | —— |

B 0000 (]
An Underconstrained SE
B]|

Two or more unconnected pieces

Relative rates between pieces undefined
1 1
a b) a—b = 0 \
‘// 3c—2d = 0 \\“
3 2 [
c d o |

Scheduling Example

1 4
b /
3 2 <
)
‘/
c 6 d
—
2 3 11
a y \

a=2b=3
e=1ld=4

Possible schedules:
BBBCDDDDAA \

BDBDBCADDA \
BBDDBDDCAA

Bc.}g not valid /
\ //

B 000 (]
B 000 |
A B 000 |
Code Generation e
B 000 |
||
In this simple-minded approach, the schedule
BBBCDDDDAA
would produce code like
/2 \

B
>

JUoDOEE®

B 0000
Consistent Rates Are NE
B |

A consistent system with no schedule
Rates do not prevent deadlock

Solution here: add a delay on-one of the arcs

Scheduling Choices

SDF Scheduling Theorem guarantees a schedule will be
found if it exists —

Systems often have many p?@'vﬂlé schedules
How can we use this flexib;l ty?
/
To reduce code size /
To reduce buffer sizes
/ / \\\
| . |

B 0
B 00
Looped Code Generation s
B

Obvious improvement: use loops

Rewrite the schedule in “looped” form:
(3B)C 9{) (2A)

Generated code becomes/

for (i =0; i <3; i++) B

C |

for (i =0 ; i <4 ;.i++) D

for (i = O\i i <2 ;\i‘i"' A
/ \ \

Finding SASs Finding Single-Appearan

B 000]
Single-Appearance Schedules ===
T

Schedules
Often possible to choose a looped schedule in which each Always exist for acyclic graphs: Blocks
block appears exactly once T appear in topological order P Recursive strongly-connected component decomposition
Leads to efficient block-strucyréd code : . For SCCs, look at number of/}dIZens Decompose into SCCs / / - \
Only requires one copy of each block's code \ that pass through arc in each period Remove non-constraining arcs \

Does not always exist (follows from balance equations)

Recurse if possible

Often requires more buffer space than other schedules If there is at least that much delay, (Removing arcs may break the SCC into two or more)
T T the arc does notimpose ordering | _ 5, _ 3 T T
e N)) La=2b=) N
/ \\ \) constraints // \\ 6 tokens cross) // \\ \)
/ \ / 4 the arc; delay of / / \ /
\ \ / Idea: no possibility of underflow ! / \ \ /
AN ‘) P d N 6 suffices AN ‘)
\\\ //,/ | \\\) |) //,/ \\\\)) /,,,/
B | B B
B 000 | B 0 | B 00
B B B
Minimum-Memory Schedules s Cyclo-static Dataflow SSSSS Cyclo-static Dataflow S
I B B
B B B
Another possible objective SDF suffers from requiring each process to produce and Alternative: have periodic, binary firings
Often increases code size (block-generated code) consume all tokens in a single flrlfjg — 111111111 ! }LQ,O,OaOA%,O;O,O .
Static scheduling makes it pq,séible to exactly predict \ Tends to lead o larger buﬁer}equwements .) \
memory requirements ’ / \\ Example: downsampler ’ / \\\ Semantics: first firing: cons(ime 1, produce 1 \\\
. . . . 8 1
Simultaneously improving code size, memory) Second through eighth firing: consume 1, produce 0
requirements, sharing buffers etc. remain open researck [\ [
problems L — | | | ‘ —
e / Don't really need to store 8 tokens in the buffer / pd
/ : ' \\\ / : // : “ \\\
) / \ \ / This process snmply dlscards 7 of them, anyway / / \ \ /
N\ AN) N\
B | B B
B 000 | B 0 | B 00
B | B B
A B | B B
Cyclo-Static Dataflow = SSSSSSS Summary of Dataflow S Summary of Dataflow NS
B | B B
B B B
Scheduling is much like SDF Processes communicating exclusively through FIFOs Synchronous Dataflow (SDF)
Balance equations establish relative rates as before Kahn process networks T Firing rules: Fixed token consumpﬁi/on/pmtmcﬁon ~
Any scheduler that avoids un/dé/rﬂow will produce a \ . Blocking read, nonblockinéWrite . Can be scheduled statically / \ .
schedule if one exists / \ o / \ * Solve balance equations to establish rates \
/ \ ¢ Deterministic / \ / \
Advantage: even more schedule flexibility / e A correct simulation produces a schedule if one exists
* Hard to schedule | \
Makes it easier to avoid Iarge buffers | Looped schedules ‘
E It d for h cfw I 1 Hard * Parks' algorithm reqmres ‘deadiock detection, dynamic | * For code generation: |m ||es Ioo s.in generated code
specially good for hardware imp emen@\lon ardware / buffer-size a dju stent \\ / g 9 p p L 9
likes moving smglt/g values et atime \ Y / \ \ / « Recursive SCC Decomposmon \ /
\ : \ : CSDF: breaks firing rules |nto\maller pleces Similar
N 7 N 7 scheduling technlque g |

